2022-2023學(xué)年海南省三亞市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年海南省三亞市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年海南省三亞市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年海南省三亞市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年海南省三亞市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年海南省三亞市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(10題)1.不等式4-x2<0的解集為()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

2.已知橢圓x2/25+y2/m2=1(m>0)的左焦點(diǎn)為F1(-4,0)則m=()A.2B.3C.4D.9

3.在2,0,1,5這組數(shù)據(jù)中,隨機(jī)取出三個(gè)不同的數(shù),則數(shù)字2是取出的三個(gè)不同數(shù)的中位數(shù)的概率為()A.3/4B.5/8C.1/2D.1/4

4.設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,則f(-1)=()A.-3B.-1C.1D.3

5.下列命題是真命題的是A.B.C.D.

6.直線x+y+1=0的傾斜角為()A.

B.

C.

D.-1

7.A.-1B.-4C.4D.2

8.5人站成一排,甲、乙兩人必須站兩端的排法種數(shù)是()A.6B.12C.24D.120

9.以坐標(biāo)軸為對(duì)稱軸,離心率為,半長(zhǎng)軸為3的橢圓方程是()A.

B.或

C.

D.或

10.A.7.5

B.C.6

二、填空題(10題)11._____;_____.

12.在:Rt△ABC中,已知C=90°,c=,b=,則B=_____.

13.圓心在直線2x-y-7=0上的圓C與y軸交于兩點(diǎn)A(0,-4),B(0,一2),則圓C的方程為___________.

14.當(dāng)0<x<1時(shí),x(1-x)取最大值時(shí)的值為________.

15.若,則_____.

16.log216+cosπ+271/3=

17.有一長(zhǎng)為16m的籬笆要圍成一個(gè)矩形場(chǎng)地,則矩形場(chǎng)地的最大面積是________m2.

18.

19.

20.若f(X)=,則f(2)=

。

三、計(jì)算題(5題)21.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說明理由.

22.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

23.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

24.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.

25.有語(yǔ)文書3本,數(shù)學(xué)書4本,英語(yǔ)書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書不挨著排的概率P。

四、簡(jiǎn)答題(10題)26.組成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個(gè)數(shù)

27.已知雙曲線C的方程為,離心率,頂點(diǎn)到漸近線的距離為,求雙曲線C的方程

28.已知cos=,,求cos的值.

29.已知平行四邊形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中點(diǎn),求。

30.已知求tan(a-2b)的值

31.計(jì)算

32.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

33.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值

34.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值

35.若α,β是二次方程的兩個(gè)實(shí)根,求當(dāng)m取什么值時(shí),取最小值,并求出此最小值

五、解答題(10題)36.

37.已知橢圓的兩焦點(diǎn)為F1(-1,0),F2(1,0),P為橢圓上的一點(diǎn),且2|F1F2|PF1|+|PF2|.(1)求此橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P在第二象限,∠F2F1P=120°,求△PF1F2的面積.

38.已知a為實(shí)數(shù),函數(shù)f(x)=(x2+l)(x+a).若f(-1)=0,求函數(shù):y=f(x)在[-3/2,1]上的最大值和最小值。

39.組成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個(gè)數(shù)

40.已知函數(shù)f(x)=2sin(x-π/3).(1)寫出函數(shù)f(x)的周期;(2)將函數(shù)f(x)圖象上所有的點(diǎn)向左平移π/3個(gè)單位,得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達(dá)式,并判斷函數(shù)g(x)的奇偶性.

41.已知直線經(jīng)過橢圓C:x2/a2+y2/b2=1(a>b>0)的一個(gè)頂點(diǎn)B和一個(gè)焦點(diǎn)F.(1)求橢圓的離心率;(2)設(shè)P是橢圓C上動(dòng)點(diǎn),求|PF|-|PB|的取值范圍,并求|PF|-|PB||取最小值時(shí)點(diǎn)P的坐標(biāo).

42.

43.求函數(shù)f(x)=x3-3x2-9x+5的單調(diào)區(qū)間,極值.

44.

45.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A,B的任意一點(diǎn).(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.

六、單選題(0題)46.己知向量a

=(2,1),b

=(-1,2),則a,b之間的位置關(guān)系為()A.平行B.不平行也不垂直C.垂直D.以上都不對(duì)

參考答案

1.D不等式的計(jì)算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

2.B橢圓的性質(zhì).由題意知25-m2=16,解得m2=9,又m>0,所以m=3.

3.C隨機(jī)抽樣的概率.分析題意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4種取法,符合題意的取法有2種,故所求概率P=1/2.故選C

4.D函數(shù)奇偶性的應(yīng)用.f(-1)=2(-1)2-(―1)=3.

5.A

6.C由直線方程可知其斜率k=-1,則傾斜角正切值為tanα=-1,所以傾斜角為3π/4。

7.C

8.B

9.B由題意可知,焦點(diǎn)在x軸或y軸上,所以標(biāo)準(zhǔn)方程有兩個(gè),而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。

10.B

11.2

12.45°,由題可知,因此B=45°。

13.(x-2)2+(y+3)2=5圓的方程.圓心在AB中垂線y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圓C的方程為(x-2)2+(y+3)2=5

14.1/2均值不等式求最值∵0<

15.27

16.66。log216+cosπ+271/3=4+(-1)+3=6。

17.16.將實(shí)際問題求最值的問題轉(zhuǎn)化為二次函數(shù)在某個(gè)區(qū)間上的最值問題.設(shè)矩形的長(zhǎng)為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

18.-1/2

19.1<a<4

20.00。將x=2代入f(x)得,f(2)=0。

21.

22.

23.

24.

25.

26.

27.

28.

29.平行四邊形ABCD,CD為AB平移所得,從B點(diǎn)開始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中點(diǎn),E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由題意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),為奇函數(shù).

41.

42.

43.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0時(shí),-1<x<3.∴f(x)單調(diào)增區(qū)間為(-∞,-1],[3,+∞),單調(diào)減區(qū)間為[-1,3].f(x)極大值為f(-1)=l0,f(x)極小值為f(3)=-22.

44.

45.(1)∵PA垂直于⊙O所在的平面,BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論