版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.2.如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y果.下面有三個推斷:①當投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;②隨著試驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;③若再次用計算機模擬此實驗,則當投擲次數(shù)為1000時,“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③3.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定4.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.5.下列調查中,最適合采用普查方式的是()A.對太原市民知曉“中國夢”內涵情況的調查B.對全班同學1分鐘仰臥起坐成績的調查C.對2018年央視春節(jié)聯(lián)歡晚會收視率的調查D.對2017年全國快遞包裹產生的包裝垃圾數(shù)量的調查6.將拋物線向右平移1個單位長度,再向下平移3個單位長度,所得的拋物線的函數(shù)表達式為()A. B.C. D.7.小紅上學要經過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學時經過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.8.下列方程中有實數(shù)解的是()A.x4+16=0 B.x2﹣x+1=0C. D.9.據調查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼10.y=(m﹣1)x|m|+3m表示一次函數(shù),則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長____cm.12.如圖,邊長為6cm的正三角形內接于⊙O,則陰影部分的面積為(結果保留π)_____.13.化簡的結果是_______________.14.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.15.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.16.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.17.閱讀下面材料:數(shù)學活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”小艾的作法如下:(1)在直線l上任取點A,以A為圓心,AP長為半徑畫弧.(2)在直線l上任取點B,以B為圓心,BP長為半徑畫?。?)兩弧分別交于點P和點M(4)連接PM,與直線l交于點Q,直線PQ即為所求.老師表揚了小艾的作法是對的.請回答:小艾這樣作圖的依據是_____.三、解答題(共7小題,滿分69分)18.(10分)列方程解應用題:某市今年進行水網升級,1月1日起調整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15元,而今年5月的水費則是30元.已知小麗家今年5月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.19.(5分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.20.(8分)2013年3月,某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現(xiàn)場進行救援,救援隊利用生命探測儀在地面A、B兩個探測點探測到C處有生命跡象.已知A、B兩點相距4米,探測線與地面的夾角分別是30°和45°,試確定生命所在點C的深度.(精確到0.1米,參考數(shù)據:)21.(10分)我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可??;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?22.(10分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.23.(12分)某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入種型號種型號第一周3臺4臺1200元第二周5臺6臺1900元(進價、售價均保持不變,利潤=銷售收入—進貨成本)(1)求、兩種型號的電器的銷售單價;(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.24.(14分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、B【解析】①當頻數(shù)增大時,頻率逐漸穩(wěn)定的值即為概率,500次的實驗次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計頻率為0.618,正確;③.這個實驗是一個隨機試驗,當投擲次數(shù)為1000時,釘尖向上”的概率不一定是0.1.錯誤,故選B.【點睛】本題考查了利用頻率估計概率,能正確理解相關概念是解題的關鍵.3、A【解析】
根據正比例函數(shù)的增減性解答即可.【詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【點睛】本題考查了正比例函數(shù)圖象與系數(shù)的關系:對于y=kx(k為常數(shù),k≠0),當k>0時,y=kx的圖象經過一、三象限,y隨x的增大而增大;當k<0時,y=kx的圖象經過二、四象限,y隨x的增大而減小.4、B【解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.5、B【解析】分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.詳解:A、調查范圍廣適合抽樣調查,故A不符合題意;B、適合普查,故B符合題意;C、調查范圍廣適合抽樣調查,故C不符合題意;D、調查范圍廣適合抽樣調查,故D不符合題意;故選:B.點睛:本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.6、A【解析】
根據二次函數(shù)的平移規(guī)律即可得出.【詳解】解:向右平移1個單位長度,再向下平移3個單位長度,所得的拋物線的函數(shù)表達式為故答案為:A.【點睛】本題考查了二次函數(shù)的平移,解題的關鍵是熟知二次函數(shù)的平移規(guī)律.7、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、C【解析】
A、B是一元二次方程可以根據其判別式判斷其根的情況;C是無理方程,容易看出沒有實數(shù)根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數(shù)根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數(shù)根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數(shù)根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數(shù)的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.9、D【解析】
眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】數(shù)據36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據,位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【點睛】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關鍵.10、B【解析】由一次函數(shù)的定義知,|m|=1且m-1≠0,所以m=-1,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、13【解析】試題解析:因為正方形AECF的面積為50cm2,所以因為菱形ABCD的面積為120cm2,所以所以菱形的邊長故答案為13.12、(4π﹣3)cm1【解析】
連接OB、OC,作OH⊥BC于H,根據圓周角定理可知∠BOC的度數(shù),根據等邊三角形的性質可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關鍵.13、【解析】
先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.14、1.【解析】
在Rt△ABC中,已知tanA,BC的值,根據tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關鍵.15、【解析】
如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.16、18°【解析】試題分析:根據圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖17、到線段兩端距離相等的點在線段的垂直平分線上或兩點確定一條直線或sss或全等三角形對應角相等或等腰三角形的三線合一【解析】
從作圖方法以及作圖結果入手考慮其作圖依據..【詳解】解:依題意,AP=AM,BP=BM,根據垂直平分線的定義可知PM⊥直線l.因此易知小艾的作圖依據是到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.故答案為到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.【點睛】本題主要考查尺規(guī)作圖,掌握尺規(guī)作圖的常用方法是解題關鍵.三、解答題(共7小題,滿分69分)18、2.4元/米【解析】
利用總水費÷單價=用水量,結合小麗家今年5月的用水量比去年12月的用水量多5m3,進而得出等式即可.【詳解】解:設去年用水的價格每立方米元,則今年用水價格為每立方米元由題意列方程得:解得經檢驗,是原方程的解(元/立方米)答:今年居民用水的價格為每立方米元.【點睛】此題主要考查了分式方程的應用,正確表示出用水量是解題關鍵.19、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質,求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質、菱形的性質、弧長公式等知識,準確添加輔助線、靈活應用相關知識解決問題是關鍵.20、5.5米【解析】
過點C作CD⊥AB于點D,設CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出關于x的方程,解出即可.【詳解】解:過點C作CD⊥AB于點D,設CD=x,在Rt△ACD中,∠CAD=30°,則AD=CD=x.在Rt△BCD中,∠CBD=45°,則BD=CD=x.由題意得,x﹣x=4,解得:.答:生命所在點C的深度為5.5米.21、客房8間,房客63人【解析】
設該店有間客房,以人數(shù)相等為等量關系列出方程即可.【詳解】設該店有間客房,則解得答:該店有客房8間,房客63人.【點睛】本題考查的是利用一元一次方程解決應用題,根據題意找到等量關系式是解題的關鍵.22、證明見解析.【解析】試題分析:首先根據等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質23、(1)A型電器銷售單價為200元,B型電器銷售單價150元;(2)最多能采購37臺;(3)方案一:采購A型36臺B型14臺;方案二:采購A型37臺B型13臺.【解析】
(1)設A、B兩種型號電器的銷售單價分別為x元、y元,根據3臺A型號4臺B型號的電器收入1200元,5臺A型號6臺B型號的電器收入1900元,列方程組求解;(2)設采購A種型號電器a臺,則采購B種型號電器(50?a)臺,根據金額不多余7500元,列不等式求解;(3)根據A型號的電器的進價和售價,B型號的電器的進價和售價,再根據一件的利潤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 假期讀一本好書讀后感900字(12篇)
- 2024全新能源開發(fā)項目投資與合作合同
- 中式快餐創(chuàng)業(yè)計劃書
- 2024年工業(yè)設備維修協(xié)議
- 2024年度4S店租賃期內公共區(qū)域維護與管理協(xié)議
- 2024年建筑工程消防設計與施工合同
- 2024年企業(yè)廣告發(fā)布與媒體投放合同
- 2024年大數(shù)據分析與應用服務協(xié)議
- 2024年度「惠州技術開發(fā)」合同標的:技術研發(fā)與成果共享
- 2024年工程項目混凝土供應合同
- 一年級拼音默寫表
- MIL-STD-202-211-2020美國美軍標準
- 申請征地信息公開范文
- 初一奧數(shù)思維訓練100題
- 學校公眾號運營事跡材料
- NFPA 90A 2018 通風空調系統(tǒng)防火要求(中文翻譯)
- 胃腸鏡健康宣教胃腸鏡檢查注意事項適應癥與禁忌癥宣傳課件
- 會計學職業(yè)生涯發(fā)展報告
- JT-T-280-2004路面標線涂料
- 廣西壯族桂林市永??h2023-2024學年四年級英語第二學期期中檢測試題含答案
- Q/GDW-1738-2012配電網規(guī)劃設計技術導則
評論
0/150
提交評論