版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.2.下列圖案是軸對稱圖形的是()A. B. C. D.3.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.4.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.25.用教材中的計算器依次按鍵如下,顯示的結(jié)果在數(shù)軸上對應(yīng)點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B6.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數(shù)為()A.100° B.110° C.120° D.130°7.《九章算術(shù)》中有這樣一個問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.8.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣69.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關(guān)于這組數(shù)據(jù)的描述正確的是()A.最低溫度是32℃ B.眾數(shù)是35℃ C.中位數(shù)是34℃ D.平均數(shù)是33℃10.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶3二、填空題(共7小題,每小題3分,滿分21分)11.一元二次方程x2﹣4=0的解是._________12.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)13.已知a+b=1,那么a2-b2+2b=________.14.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結(jié)果保留π)15.分解因:=______________________.16.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為____cm.17.經(jīng)過三邊都不相等的三角形的一個頂點的線段把三角形分成兩個小三角形,如果其中一個是等腰三角形,另外一個三角形和原三角形相似,那么把這條線段定義為原三角形的“和諧分割線”.如圖,線段CD是△ABC的“和諧分割線”,△ACD為等腰三角形,△CBD和△ABC相似,∠A=46°,則∠ACB的度數(shù)為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當(dāng)他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.19.(5分)如圖1,四邊形ABCD中,,,點P為DC上一點,且,分別過點A和點C作直線BP的垂線,垂足為點E和點F.證明:∽;若,求的值;如圖2,若,設(shè)的平分線AG交直線BP于當(dāng),時,求線段AG的長.20.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.21.(10分)央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學(xué)生;將條形統(tǒng)計圖1補充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).22.(10分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.設(shè)以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當(dāng)x=c時,y=0,當(dāng)0<x<c時,y>0,試比較ac與l的大小,并說明理由.23.(12分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標(biāo);(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).24.(14分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側(cè)一列有2層,右側(cè)一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關(guān)鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.2、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.3、A【解析】
首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.4、D【解析】
根據(jù)“一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4”,結(jié)合根與系數(shù)的關(guān)系,分別列出關(guān)于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【點睛】本題考查了根與系數(shù)的關(guān)系,正確掌握根與系數(shù)的關(guān)系是解決問題的關(guān)鍵.5、A【解析】試題分析:在計算器上依次按鍵轉(zhuǎn)化為算式為﹣=-1.414…;計算可得結(jié)果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸6、B【解析】
根據(jù)同弧所對的圓周角是圓心角度數(shù)的一半即可解題.【詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數(shù)的一半),故選B.【點睛】本題考查了圓周角和圓心角的關(guān)系,屬于簡單題,熟悉概念是解題關(guān)鍵.7、A【解析】
設(shè)甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關(guān)于x,y的二元一次方程組,此題得解.【詳解】解:設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.8、D【解析】
根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當(dāng)該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點前的1個0),從而.故選D.9、D【解析】分析:將數(shù)據(jù)從小到大排列,由中位數(shù)及眾數(shù)、平均數(shù)的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數(shù)為33℃,中位數(shù)為33℃,平均數(shù)是=33℃.故選D.點睛:本題考查了眾數(shù)、中位數(shù)的知識,解答本題的關(guān)鍵是由折線統(tǒng)計圖得到最高氣溫的7個數(shù)據(jù).10、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對應(yīng)邊之比的平方,進而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對應(yīng)邊之比,進而得到面積比.二、填空題(共7小題,每小題3分,滿分21分)11、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.12、①②【解析】
根據(jù)折疊的性質(zhì)可知,結(jié)合垂徑定理、三角形的性質(zhì)、同圓或等圓中圓周角與圓心的性質(zhì)等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經(jīng)過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對圓周角相等)
∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點在以AB為直徑的圓上運動.
所以,如圖3,當(dāng)E、O、F在同一直線時,OE長度最小
此時,AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.13、1【解析】
解:∵a+b=1,∴原式=故答案為1.【點睛】本題考查的是平方差公式的靈活運用.14、18π【解析】
根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關(guān)鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.15、(x-2y)(x-2y+1)【解析】
根據(jù)所給代數(shù)式第一、二、五項一組,第三、四項一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)16、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構(gòu)成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經(jīng)過的路線為圓心角為60°且半徑為10cm的圓?。嗟拈L=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經(jīng)過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.17、113°或92°【解析】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.①當(dāng)AC=AD時,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;②當(dāng)DA=DC時,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.故答案為113°或92°.三、解答題(共7小題,滿分69分)18、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.19、(1)證明見解析;(2);(3).【解析】
由余角的性質(zhì)可得,即可證∽;由相似三角形的性質(zhì)可得,由等腰三角形的性質(zhì)可得,即可求的值;由題意可證∽,可得,可求,由等腰三角形的性質(zhì)可得AE平分,可證,可得是等腰直角三角形,即可求AG的長.【詳解】證明:,又,又,∽∽,又,,如圖,延長AD與BG的延長線交于H點,∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【點睛】本題考查的知識點是全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解題關(guān)鍵是添加恰當(dāng)輔助線構(gòu)造相似三角形.20、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.21、(1)200;(2)見解析;(3)126°;(4)240人.【解析】
(1)根據(jù)文史類的人數(shù)以及文史類所占的百分比即可求出總?cè)藬?shù)(2)根據(jù)總?cè)藬?shù)以及生活類的百分比即可求出生活類的人數(shù)以及小說類的人數(shù);(3)根據(jù)小說類的百分比即可求出圓心角的度數(shù);(4)利用樣本中喜歡社科類書籍的百分比來估計總體中的百分比,從而求出喜歡社科類書籍的學(xué)生人數(shù)【詳解】(1)∵喜歡文史類的人數(shù)為76人,占總?cè)藬?shù)的38%,∴此次調(diào)查的總?cè)藬?shù)為:76÷38%=200人,故答案為200;(2)∵喜歡生活類書籍的人數(shù)占總?cè)藬?shù)的15%,∴喜歡生活類書籍的人數(shù)為:200×15%=30人,∴喜歡小說類書籍的人數(shù)為:200﹣24﹣76﹣30=70人,如圖所示:(3)∵喜歡社科類書籍的人數(shù)為:24人,∴喜歡社科類書籍的人數(shù)占了總?cè)藬?shù)的百分比為:×100%=12%,∴喜歡小說類書籍的人數(shù)占了總分數(shù)的百分比為:100%﹣15%﹣38%﹣12%=35%,∴小說類所在圓心角為:360°×35%=126°;(4)由樣本數(shù)據(jù)可知喜歡“社科類”書籍的學(xué)生人數(shù)占了總?cè)藬?shù)的12%,∴該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù):2000×12%=240人.【點睛】此題考查扇形統(tǒng)計圖和條形統(tǒng)計圖,看懂圖中數(shù)據(jù)是解題關(guān)鍵22、(Ⅰ)①y=x2+3x②當(dāng)3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】
(I)①由拋物線的頂點為A(-2,-3),可設(shè)拋物線的解析式為y=a(x+2)2-3,代入點B的坐標(biāo)即可求出a值,此問得解,②根據(jù)點A、B的坐標(biāo)利用待定系數(shù)法可求出直線AB的解析式,進而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當(dāng)點P在第二象限時,x<0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,當(dāng)點P在第四象限時,x>0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結(jié)論,(2)由當(dāng)x=c時y=0,可得出b=-ac-1,由當(dāng)0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進而可得出b≤-2ac,結(jié)合b=-ac-1即可得出ac≤1.【詳解】(I)①設(shè)拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經(jīng)過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設(shè)直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當(dāng)點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當(dāng)點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當(dāng)3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當(dāng)x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當(dāng)0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數(shù)法求二次(一次)函數(shù)解析式、三角形的面積、梯形的面積、解一元一次不等式組、二次函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)①巧設(shè)頂點式,代入點B的坐標(biāo)求出a值,②分點P在第二象限及點P在第四象限兩種情況找出x的取值范圍,(2)根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征結(jié)合二次函數(shù)的性質(zhì),找出b=-ac-1及b≤-2ac.23、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】試題分析:(1)將點A、點C的坐標(biāo)代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標(biāo);(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進行分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 首飾原料采購合同模板
- 個人簡易合同模板
- 中國銀行信托合同模板
- 采購耗材合同模板
- 礦山剝巖合同模板
- 月租住房合同模板
- 酒吧承包團建合同模板
- 店面施工合同模板
- 發(fā)屋租賃合同模板
- 研發(fā)app合同模板
- GB/T 44715-2024民用輕小型無人機碰撞安全性要求
- 2024年湖南省長沙市中考歷史試卷(附答案)
- 2024年4月全國自考00054管理學(xué)原理真題試卷及答案
- 《電子技術(shù)基礎(chǔ)》期中考試試卷及參考答案
- 淺談中班幼兒動手能力的培養(yǎng)
- 市場細分案例篇PPT課件
- 《中建六局建設(shè)發(fā)展有限公司固定資產(chǎn)管理辦法》
- 苯甲醇與苯甲酸的制備實驗
- 電光開關(guān)配件明細(標(biāo)準(zhǔn))
- 深圳市家庭居室裝飾裝修管理辦法
- 【·新課標(biāo)全國卷I】【馬文升】字詞詳細注解及全文翻譯
評論
0/150
提交評論