版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O(shè)點為圓心,OA為半徑的上,則k的值為A. B. C. D.2.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.3.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.4.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數(shù)是,次數(shù)是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項5.小紅上學要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.6.下列左圖表示一個由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小立方塊的個數(shù),則該幾何體的主視圖為()A. B. C. D.7.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.8.如圖,是的直徑,弦,,,則陰影部分的面積為()A.2π B.π C. D.9.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°10.2018年,我國將加大精準扶貧力度,今年再減少農(nóng)村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數(shù)據(jù)280萬用科學計數(shù)法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×10711.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=12.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:x3﹣2x2+x=______.14.已知xy=3,那么的值為______.15.在數(shù)軸上,點A和點B分別表示數(shù)a和b,且在原點的兩側(cè),若=2016,AO=2BO,則a+b=_____16.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.17.若2x+y=2,則4x+1+2y的值是_______.18.如圖,邊長為6cm的正三角形內(nèi)接于⊙O,則陰影部分的面積為(結(jié)果保留π)_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)水果店老板用600元購進一批水果,很快售完;老板又用1250元購進第二批水果,所購件數(shù)是第一批的2倍,但進價比第一批每件多了5元,問第一批水果每件進價多少元?20.(6分)為響應國家“厲行節(jié)約,反對浪費”的號召,某班一課外活動小組成員在全校范圍內(nèi)隨機抽取了若干名學生,針對“你每天是否會節(jié)約糧食”這個問題進行了調(diào)查,并將調(diào)查結(jié)果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統(tǒng)計圖(如圖)(1)這次被抽查的學生共有______人,扇形統(tǒng)計圖中,“A組”所對應的圓心度數(shù)為______;(2)補全兩個統(tǒng)計圖;(3)如果該校學生共有2000人,請估計“每天都會節(jié)約糧食”的學生人數(shù);(4)若不節(jié)約零食造成的浪費,按平均每人每天浪費5角錢計算,小江認為,該校學生一年(365天)共將浪費:2000×20%×0.5×365=73000(元),你認為這種說法正確嗎?并說明理由.21.(6分)如圖,已知三角形ABC的邊AB是0的切線,切點為B.AC經(jīng)過圓心0并與圓相交于點D,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分∠ACE;(2)若BE=3,CE=4,求O的半徑.22.(8分)已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點A(3,n).(1)求實數(shù)a的值;(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點B,若點C在y軸上,且S△ABC=2S△AOB,求點C的坐標.23.(8分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.24.(10分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)25.(10分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.(1)求點A、B的坐標;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.26.(12分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關(guān)于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.27.(12分)如圖,正方形ABCD的邊長為2,BC邊在x軸上,BC的中點與原點O重合,過定點M(-2,0)與動點P(0,t)的直線MP記作l.(1)若l的解析式為y=2x+4,判斷此時點A是否在直線l上,并說明理由;(2)當直線l與AD邊有公共點時,求t的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
由題意,因為與反比例函數(shù)都是關(guān)于直線對稱,推出A與B關(guān)于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關(guān)于直線對稱,與B關(guān)于直線對稱,,,點故選:A.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質(zhì),圓的對稱性及軸對稱的性質(zhì).解題的關(guān)鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關(guān)于直線對稱.2、B【解析】
解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內(nèi)為增函數(shù),且當x<0時y>0,當x>0時,y<0,∴<<.3、C【解析】
結(jié)合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.4、C【解析】
根據(jù)多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數(shù)是π,次數(shù)是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數(shù)不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關(guān)鍵是掌握多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義.5、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、B【解析】
由俯視圖所標該位置上小立方塊的個數(shù)可知,左側(cè)一列有2層,右側(cè)一列有1層.【詳解】根據(jù)俯視圖中的每個數(shù)字是該位置小立方塊的個數(shù),得出主視圖有2列,從左到右的列數(shù)分別是2,1.故選B.【點睛】此題考查了三視圖判斷幾何體,用到的知識點是俯視圖、主視圖,關(guān)鍵是根據(jù)三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系.7、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.8、D【解析】分析:連接OD,則根據(jù)垂徑定理可得出CE=DE,繼而將陰影部分的面積轉(zhuǎn)化為扇形OBD的面積,代入扇形的面積公式求解即可.詳解:連接OD,∵CD⊥AB,∴(垂徑定理),故即可得陰影部分的面積等于扇形OBD的面積,又∵∴(圓周角定理),∴OC=2,故S扇形OBD=即陰影部分的面積為.故選D.點睛:考查圓周角定理,垂徑定理,扇形面積的計算,熟記扇形的面積公式是解題的關(guān)鍵.9、A【解析】
根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.10、B【解析】分析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:280萬這個數(shù)用科學記數(shù)法可以表示為故選B.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.11、D【解析】
A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結(jié)論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標特征逐一分析四個選項的正誤是解題的關(guān)鍵.12、C【解析】
由平面圖形的折疊及正方形的展開圖結(jié)合本題選項,一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【點睛】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)214、±2【解析】分析:先化簡,再分同正或同負兩種情況作答.詳解:因為xy=3,所以x、y同號,于是原式==,當x>0,y>0時,原式==2;當x<0,y<0時,原式==?2故原式=±2.點睛:本題考查的是二次根式的化簡求值,能夠正確的判斷出化簡過程中被開方數(shù)底數(shù)的符號是解答此題的關(guān)鍵.15、-672或672【解析】∵,∴a-b=±2016,∵AO=2BO,A和點B分別在原點的兩側(cè)∴a=-2b.當a-b=2016時,∴-2b-b=2016,解得:b=-672.∴a=?2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得當a-b=-2016時,a+b=-672,∴a+b=±672,故答案為:?672或672.16、﹣1<r<.【解析】
首先根據(jù)題意求得對角線AC的長,設(shè)圓A的半徑為R,根據(jù)點B在圓A外,得出0<R<1,則-1<-R<0,再根據(jù)圓A與圓C外切可得R+r=,利用不等式的性質(zhì)即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,
∴AC=,
設(shè)圓A的半徑為R,
∵點B在圓A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C為圓心的兩圓外切,
∴兩圓的半徑的和為,
∴R+r=,r=-R,
∴-1<r<.
故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關(guān)系,點與圓的位置關(guān)系,正方形的性質(zhì),勾股定理,不等式的性質(zhì).掌握位置關(guān)系與數(shù)量之間的關(guān)系是解題的關(guān)鍵.17、1【解析】分析:將原式化簡成2(2x+y)+1,然后利用整體代入的思想進行求解得出答案.詳解:原式=2(2x+y)+1=2×2+1=1.點睛:本題主要考查的是整體思想求解,屬于基礎(chǔ)題型.找到整體是解題的關(guān)鍵.18、(4π﹣3)cm1【解析】
連接OB、OC,作OH⊥BC于H,根據(jù)圓周角定理可知∠BOC的度數(shù),根據(jù)等邊三角形的性質(zhì)可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質(zhì),在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、120【解析】
設(shè)第一批水果每件進價為x元,則第二批水果每件進價為(x+5)元,根據(jù)用1250元所購件數(shù)是第一批的2倍,列方程求解.【詳解】解:設(shè)第一批水果每件進價為x元,則第二批水果每件進價為(x+5)元,由題意得,×2=,解得:x=120,經(jīng)檢驗:x=120是原分式方程的解,且符合題意.答:第一批水果每件進價為120元.【點睛】本題考查了分式方程的應用,解題的關(guān)鍵是熟練的掌握分式方程的應用.20、(1)50,108°(2)見解析;(3)600人;(4)不正確,見解析.【解析】
(1)由C組人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以A組人數(shù)所占比例可得;(2)根據(jù)百分比之和為1求得A組百分比補全圖1,總?cè)藬?shù)乘以B的百分比求得其人數(shù)即可補全圖2;(3)總?cè)藬?shù)乘以樣本中A所占百分比可得;(4)由樣本中浪費糧食的人數(shù)所占比例不是20%即可作出判斷.【詳解】(1)這次被抽查的學生共有25÷50%=50人,扇形統(tǒng)計圖中,“A組”所對應的圓心度數(shù)為360°×=108°,故答案為50、108°;(2)圖1中A對應的百分比為1-20%-50%=30%,圖2中B類別人數(shù)為50×20%=5,補全圖形如下:(3)估計“每天都會節(jié)約糧食”的學生人數(shù)為2000×30%=600人;(4)不正確,因為在樣本中浪費糧食的人數(shù)所占比例不是20%,所以這種說法不正確.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。瑫r本題還考查了通過樣本來估計總體.21、(1)證明見解析;(2).【解析】試題分析:(1)證明:如圖1,連接OB,由AB是⊙0的切線,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根據(jù)等腰三角形的性質(zhì)得到∠1=∠2,通過等量代換得到結(jié)果.(2)如圖2,連接BD通過△DBC∽△CBE,得到比例式,列方程可得結(jié)果.(1)證明:如圖1,連接OB,∵AB是⊙0的切線,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如圖2,連接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD?CE,∴CD==,∴OC==,∴⊙O的半徑=.考點:切線的性質(zhì).22、(1)a=1;(2)C(0,﹣4)或(0,0).【解析】
(1)把A(3,n)代入y=(x>0)求得n的值,即可得A點坐標,再把A點坐標代入一次函數(shù)y=ax﹣2可得a的值;(2)先求出一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交點B的坐標,再分兩種情況(①當C點在y軸的正半軸上或原點時;②當C點在y軸的負半軸上時)求點C的坐標即可.【詳解】(1)∵函數(shù)y=(x>0)的圖象過(3,n),∴3n=3,n=1,∴A(3,1)∵一次函數(shù)y=ax﹣2(a≠0)的圖象過點A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點B,∴B(0,﹣2),①當C點在y軸的正半軸上或原點時,設(shè)C(0,m),∵S△ABC=2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②當C點在y軸的負半軸上時,設(shè)(0,h),∵S△ABC=2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【點睛】本題主要考查了一次函數(shù)與反比例函數(shù)交點問題,解決第(2)問時要注意分類討論,不要漏解.23、(1);(2)見解析;(3)【解析】
(1)AB是⊙O的直徑,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)連接OD,由已知條件證明AC∥OD,又DE⊥AC,可得DE是⊙O的切線;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的長.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==;(2)連接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線;(3)設(shè)AD=x,則BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=.【點睛】本題考查切線的證明及圓與三角形相似的綜合,為中考??碱}型,需引起重視.24、(1)i)證明見試題解析;ii);(2);(3).【解析】
(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點睛】本題考查相似三角形的判定與性質(zhì);正方形的性質(zhì);矩形的性質(zhì);菱形的性質(zhì).25、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)設(shè)y=0,可求x的值,即求A,B的坐標;(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點坐標,可得ON的長度,根據(jù)S△BMC=,可求a的值;(3)過M點作ME∥AB,設(shè)NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點坐標,代入可得k,m,a的關(guān)系式,由CO=2km+m=-12a,可得方程組,解得k,即可求結(jié)果.【詳解】(1)設(shè)y=0,則0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如圖1,作MD⊥x軸,∵MD⊥x軸,OC⊥x軸,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴當x=﹣3時,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根據(jù)題意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如圖2:過M點作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,設(shè)NO=m,=k(k>0),∵ME∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×=(k+1)(9k﹣12),∴=9k-12,∴k=,∴.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝飾裝修承包合同范本
- 違約責任承諾書范例(15篇)
- 工作年會主持稿
- 幼兒園六一文藝演出活動主持詞(3篇)
- 街邊店面房屋買賣合同范本
- 小飯店裝修勞動合同范本
- 花木維護合同范本
- 五年級數(shù)學上冊 【考點題型歸納】第二單元 軸對稱和平移(含答案)(北師大版)
- 2023年中國人民大學選拔到學校黨團學一線工作筆試真題
- 2023年武漢華夏理工學院大學英語課部教師招聘考試真題
- 股票分析入門整理-入眠
- 部編版(統(tǒng)編)小學語文三年級上冊期末試卷(含答題卡)
- 山東預拌砂漿生產(chǎn)企業(yè)備案登記
- 小學四年級班家長會班主任PPT課件
- (完整版)初中尺規(guī)作圖典型例題歸納總結(jié)
- 雙師同堂課題中期報告
- 怎樣提出好的改善提案5篇
- 《服裝市場營銷》課程標準.
- xx醫(yī)院三季度藥事管理委員會會議紀要
- 保護野生動物的英文宣傳標語
- 茶葉審評細則 - 茶業(yè)大賽
評論
0/150
提交評論