四川省遂寧市安居區(qū)重點達標名校2021-2022學年中考數(shù)學最后一模試卷含解析_第1頁
四川省遂寧市安居區(qū)重點達標名校2021-2022學年中考數(shù)學最后一模試卷含解析_第2頁
四川省遂寧市安居區(qū)重點達標名校2021-2022學年中考數(shù)學最后一模試卷含解析_第3頁
四川省遂寧市安居區(qū)重點達標名校2021-2022學年中考數(shù)學最后一模試卷含解析_第4頁
四川省遂寧市安居區(qū)重點達標名校2021-2022學年中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

四川省遂寧市安居區(qū)重點達標名校2021-2022學年中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.點A(-2,5)關于原點對稱的點的坐標是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)2.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.43.計算(-1)×2的結(jié)果是()A.-2 B.-1 C.1 D.24.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O45.如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.6.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.7.在武漢市舉辦的“讀好書、講禮儀”活動中,某學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統(tǒng)計圖,根據(jù)圖中信息,該班平均每人捐書的冊數(shù)是()A.3B.3.2C.4D.4.58.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.9.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.10.在下列四個標志中,既是中心對稱又是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是__.12.在一次射擊訓練中,某位選手五次射擊的環(huán)數(shù)分別為5,8,7,6,1.則這位選手五次射擊環(huán)數(shù)的方差為.13.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然后放回池塘里,經(jīng)過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其中有標記的魚有10條,則估計池塘里有魚_____條.14.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.15.如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為_____.16.不等式≥-1的正整數(shù)解為________________.17.如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.三、解答題(共7小題,滿分69分)18.(10分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.19.(5分)列方程解應用題:為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關人員分別到這兩個廣告公司了解情況,獲得如下信息:信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?20.(8分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.21.(10分)在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.22.(10分)如圖,四邊形ABCD是平行四邊形,點E在BC上,點F在AD上,BE=DF,求證:AE=CF.23.(12分)某汽車制造公司計劃生產(chǎn)A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產(chǎn)方案?(2)該公司按照哪種方案生產(chǎn)汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產(chǎn)甲乙兩種鋼板(兩種都生產(chǎn)),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產(chǎn)方案?(直接寫出答案)24.(14分)雅安地震,某地駐軍對道路進行清理.該地駐軍在清理道路的工程中出色完成了任務.這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).【詳解】根據(jù)中心對稱的性質(zhì),得點P(?2,5)關于原點對稱點的點的坐標是(2,?5).故選:B.【點睛】考查關于原點對稱的點的坐標特征,平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).2、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎題型.解方程的一般方法的掌握是解題的關鍵.3、A【解析】

根據(jù)兩數(shù)相乘,同號得正,異號得負,再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數(shù)的乘法計算,解答本題的關鍵是熟練掌握有理數(shù)的乘法法則.4、A【解析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.5、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最?。删€段垂直平分線性質(zhì)可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質(zhì);3.軸對稱作圖.6、D【解析】

根據(jù)中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.7、B【解析】七年級(1)班捐獻圖書的同學人數(shù)為9÷18%=50人,捐獻4冊的人數(shù)為50×30%=15人,捐獻3冊的人數(shù)為50-6-9-15-8=12人,所以該班平均每人捐書的冊數(shù)為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.8、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.

∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.9、C【解析】

由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,

∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,

∴DG=CG-CD=2,AD∥GF,

則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.10、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】解:A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、既不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為612=1故答案為:12【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.13、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.14、1【解析】

根據(jù)弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.15、【解析】試題分析:根據(jù)矩形的性質(zhì)求出△AOB的面積等于矩形ABCD的面積的,求出△AOB的面積,再分別求出、、、的面積,即可得出答案∵四邊形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考點:矩形的性質(zhì);平行四邊形的性質(zhì)點評:本題考查了矩形的性質(zhì),平行四邊形的性質(zhì),三角形的面積的應用,解此題的關鍵是能根據(jù)求出的結(jié)果得出規(guī)律,注意:等底等高的三角形的面積相等16、1,2,1.【解析】

去分母,移項,合并同類項,系數(shù)化成1即可求出不等式的解集,根據(jù)不等式的解集即可求出答案.【詳解】,

∴1-x≥-2,

∴-x≥-1,

∴x≤1,

∴不等式的正整數(shù)解是1,2,1,

故答案為:1,2,1.【點睛】本題考查了解一元一次不等式和一元一次不等式的整數(shù)解,關鍵是求出不等式的解集.17、4或8【解析】

由平移的性質(zhì)可知陰影部分為平行四邊形,設A′D=x,根據(jù)題意陰影部分的面積為(12?x)×x,即x(12?x),當x(12?x)=32時,解得:x=4或x=8,所以AA′=8或AA′=4?!驹斀狻吭OAA′=x,AC與A′B′相交于點E,∵△ACD是正方形ABCD剪開得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD?AA′=12?x,∵兩個三角形重疊部分的面積為32,∴x(12?x)=32,整理得,x?12x+32=0,解得x=4,x=8,即移動的距離AA′等4或8.【點睛】本題考查正方形和圖形的平移,熟練掌握計算法則是解題關鍵·.三、解答題(共7小題,滿分69分)18、2.【解析】

根據(jù)勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC的中線,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,則AD⊥BC,又∵CD=BD,∴AC=AB=2.【點睛】本題考核知識點:勾股定理、全等三角形、垂直平分線.解題關鍵點:熟記相關性質(zhì),證線段相等.19、甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【解析】

設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄,然后根據(jù)“甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天”列出方程求解即可.【詳解】解:設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄.根據(jù)題意得:1200x解得:x=1.經(jīng)檢驗:x=1是原方程的解且符合實際問題的意義.∴1.2x=1.2×1=2.答:甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【點睛】此題考查了分式方程的應用,找出等量關系為兩廣告公司的工作時間的差為10天是解題的關鍵.20、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=MB,若M不為L與DB的交點,則三點B、M、D構(gòu)成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時,差值最大,設直線BD的解析式是y=kx+b,把B、D的坐標代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標為(1,﹣83答:M的坐標為(1,﹣83考點:二次函數(shù)綜合題.21、(1)100元和150元;(2)購進A種級別的茶葉67kg,購進B種級別的茶葉133kg.銷售總利潤最大為26650元.【解析】試題分析:(1)設每千克A級別茶葉和B級別茶葉的銷售利潤分別為x元和y元;

(2)設購進A種級別的茶葉akg,購進B種級別的茶葉(200-a)kg.銷售總利潤為w元.構(gòu)建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問題.試題解析:解:(1)設每千克A級別茶葉和B級別茶葉的銷售利潤分別為x元和y元.由題意,解得,答:每千克A級別茶葉和B級別茶葉的銷售利潤分別為100元和150元.(2)設購進A種級別的茶葉akg,購進B種級別的茶葉(200﹣a)kg.銷售總利潤為w元.由題意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w隨x的增大而減小,∴當a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴當a=67時,w最小=﹣50×67+30000=26650(元),此時200﹣67=133kg,答:購進A種級別的茶葉67kg,購進B種級別的茶葉133kg.銷售總利潤最大為26650元.點睛:本題考查一次函數(shù)的應用、二元一次方程組、不等式等知識,解題的關鍵是理解題意,學會利用參數(shù)構(gòu)建一次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論