2022年四川省廣元市萬達中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測試題含解析_第1頁
2022年四川省廣元市萬達中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測試題含解析_第2頁
2022年四川省廣元市萬達中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測試題含解析_第3頁
2022年四川省廣元市萬達中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測試題含解析_第4頁
2022年四川省廣元市萬達中學(xué)數(shù)學(xué)九上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.全等圖形是相似比為1的相似圖形,因此全等是特殊的相似,我們可以由研究全等三角形的思路,提出相似三角形的問題和研究方法.這種其中主要利用的數(shù)學(xué)方法是()A.代入法 B.列舉法 C.從特殊到一般 D.反證法2.二次函數(shù)的圖象與y軸的交點坐標(biāo)是()A.(0,1) B.(1,0) C.(-1,0) D.(0,-1)3.已知是方程的一個解,則的值是()A.±1 B.0 C.1 D.-14.如圖,在中,弦AB=12,半徑與點P,且P為的OC中點,則AC的長是()A. B.6 C.8 D.5.如圖,△ABC中,∠C=90°,AB=5,AC=4,且點D,E分別是AC,AB的中點,若作半徑為3的⊙C,則下列選項中的點在⊙C外的是()A.點B B.點D C.點E D.點A6.下列事件中,必然發(fā)生的是()A.某射擊運動射擊一次,命中靶心 B.通常情況下,水加熱到100℃時沸騰C.?dāng)S一次骰子,向上的一面是6點 D.拋一枚硬幣,落地后正面朝上7.口袋中有14個紅球和若干個白球,這些球除顏色外都相同,從口袋中隨機摸出一個球,記下顏色后放回,多次實驗后發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.3,則白球的個數(shù)是()A.5 B.6 C.7 D.88.一元二次方程x2﹣3x+5=0的根的情況是()A.沒有實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.有兩個不相等的實數(shù)根9.由四個相同的小正方體搭建了一個積木,它的三視圖如圖所示,則這個積木可能是()A. B. C. D.10.如圖,中,,,,則的長為()A. B. C.5 D.11.已知點P(2a+1,a﹣1)關(guān)于原點對稱的點在第一象限,則a的取值范圍是()A.a(chǎn)<﹣或a>1 B.a(chǎn)<﹣ C.﹣<a<1 D.a(chǎn)>112.一元二次方程x2﹣4x+5=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根二、填空題(每題4分,共24分)13.某計算機程序第一次算得m個數(shù)據(jù)的平均數(shù)為x,第二次算得另外n個數(shù)據(jù)的平均數(shù)為y,則這個數(shù)據(jù)的平均數(shù)等于______.14.如圖,一組等距的平行線,點A、B、C分別在直線l1、l6、l4上,AB交l3于點D,AC交l3于點E,BC交于l5點F,若△DEF的面積為1,則△ABC的面積為_____.15.動手操作:在矩形紙片ABCD中,AB=3,AD=5.如圖所示,折疊紙片,使點A落在BC邊上的A’處,折痕為PQ,當(dāng)點A’在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動,則點A’在BC邊上可移動的最大距離為.16.已知CD是Rt△ABC的斜邊AB上的中線,若∠A=35°,則∠BCD=_____________.17.拋物線在對稱軸左側(cè)的部分是上升的,那么的取值范圍是____________.18.若是一元二次方程的兩個實數(shù)根,則_______.三、解答題(共78分)19.(8分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如圖1,當(dāng)DE∥BC時,有DBEC.(填“>”,“<”或“=”)(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).20.(8分)若二次函數(shù)y=ax2+bx+c的圖象的頂點是(2,1)且經(jīng)過點(1,﹣2),求此二次函數(shù)解析式.21.(8分)在大課間活動中,體育老師隨機抽取了九年級甲、乙兩班部分女生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和頻數(shù)直方圖,請你根據(jù)圖表中的信息完成下列問題:(1)頻數(shù)分布表中a=,b=;(2)將頻數(shù)直方圖補充完整;(3)如果該校九年級共有女生360人,估計仰臥起坐能夠一分鐘完成30次或30次以上的女學(xué)生有多少人?(4)已知第一組有兩名甲班學(xué)生,第四組中只有一名乙班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?22.(10分)有一塊矩形木板,木工采用如圖的方式,在木板上截出兩個面積分別為18dm2和32dm2的正方形木板.(1)求剩余木料的面積.(2)如果木工想從剩余的木料中截出長為1.5dm,寬為ldm的長方形木條,最多能截出塊這樣的木條.23.(10分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C(1)求證:AE與⊙O相切于點A;(2)若AE∥BC,BC=2,AC=2,求AD的長.24.(10分)如圖,在中,,,垂足分別為,與相交于點.(1)求證:;(2)當(dāng)時,求的長.25.(12分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結(jié)PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求PB的長.26.已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根(1)求的取值范圍;(2)若為正整數(shù),且該方程的根都是整數(shù),求的值.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)全等是特殊的相似,即可得到“提出相似三角形的問題和研究方法”是從特殊到一般.【詳解】∵全等圖形是相似比為1的相似圖形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的問題和研究方法,是從特殊到一般的數(shù)學(xué)方法.故選C.【點睛】本題主要考查研究相似三角形的數(shù)學(xué)方法,理解相似三角形和全等三角形的聯(lián)系,是解題的關(guān)鍵.2、D【詳解】當(dāng)x=0時,y=0-1=-1,∴圖象與y軸的交點坐標(biāo)是(0,-1).故選D.3、A【分析】利用一元二次方程解得定義,將代入得到,然后解關(guān)于的方程.【詳解】解:將代入得到,解得故選A【點睛】本題考查了一元二次方程的解.4、D【分析】根據(jù)垂徑定理求出AP,連結(jié)OA根據(jù)勾股定理構(gòu)造方程可求出OA、OP,再求出PC,最后根據(jù)勾股定理即可求出AC.【詳解】解:如圖,連接OA,∵AB=12,OC⊥AB,OC過圓心O,∴AP=BP=AB=6,∵P為的OC中點,設(shè)⊙O的半徑為2R,即OA=OC=2R,則PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故選:D.【點睛】本題考查了垂徑定理和勾股定理,能根據(jù)垂徑定理求出AP的長是解此題的關(guān)鍵.5、D【分析】分別求出AC、CE、BC、CD的長,根據(jù)點與圓的位置關(guān)系的判斷方法進行判斷即可.【詳解】如圖,連接CE,∵∠C=90°,AB=5,AC=4,∴BC==3,∵點D,E分別是AC,AB的中點,∴CD=AC=2,CE=AB=,∵⊙C的半徑為3,BC=3,,,∴點B在⊙C上,點E在⊙C內(nèi),點D在⊙C內(nèi),點A在⊙C外,故選:D.【點睛】本題考查點與圓的位置關(guān)系,解題的關(guān)鍵是求點到圓心的距離.6、B【解析】A、某射擊運動射擊一次,命中靶心,隨機事件;B、通常加熱到100℃時,水沸騰,是必然事件.C、擲一次骰子,向上的一面是6點,隨機事件;D拋一枚硬幣,落地后正面朝上,隨機事件;故選B.7、B【分析】設(shè)白球的個數(shù)為x,利用概率公式即可求得.【詳解】設(shè)白球的個數(shù)為x,由題意得,從14個紅球和x個白球中,隨機摸出一個球是白球的概率為0.3,則利用概率公式得:,解得:,經(jīng)檢驗,x=6是原方程的根,故選:B.【點睛】本題考查了等可能下概率的計算,理解題意利用概率公式列出等式是解題關(guān)鍵.8、A【解析】Δ=b2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程沒有實數(shù)根,故選A.9、A【解析】分析:從主視圖上可以看出上下層數(shù),從俯視圖上可以看出底層有多少小正方體,從左視圖上可以看出前后層數(shù),綜合三視圖可得到答案.解答:解:從主視圖上可以看出左面有兩層,右面有一層;從左視圖上看分前后兩層,后面一層上下兩層,前面只有一層,從俯視圖上看,底面有3個小正方體,因此共有4個小正方體組成,故選A.10、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點睛】本題考查解直角三角形.11、B【分析】直接利用關(guān)于原點對稱點的縱橫坐標(biāo)均互為相反數(shù)分析得出答案.【詳解】點P(2a+1,a﹣1)關(guān)于原點對稱的點(﹣2a﹣1,﹣a+1)在第一象限,則,解得:a<﹣.故選:B.【點睛】此題主要考查了關(guān)于原點對稱點的性質(zhì)以及不等式組的解法,正確解不等式是解題關(guān)鍵.12、A【解析】首先求出一元二次方程根的判別式,然后結(jié)合選項進行判斷即可.【詳解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程無實數(shù)根,故選A.【點睛】本題主要考查了根的判別式的知識,解題關(guān)鍵是要掌握一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.二、填空題(每題4分,共24分)13、.【分析】根據(jù)加權(quán)平均數(shù)的基本求法,平均數(shù)等于總和除以個數(shù),即可得到答案.【詳解】平均數(shù)等于總和除以個數(shù),所以平均數(shù).【點睛】本題考查求加權(quán)平均數(shù),解題的關(guān)鍵是掌握加權(quán)平均數(shù)的基本求法.14、【分析】在三角形中由同底等高,同底倍高求出,根據(jù)平行線分線段成比例定理,求出,最后由三角形的面積的和差法求得.【詳解】連接DC,設(shè)平行線間的距離為h,AD=2a,如圖所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行線是一組等距的,AD=2a,∴,∴BD=3a,設(shè)C到AB的距離為k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案為:.【點睛】本題綜合考查了平行線分線段成比例定理,平行線間的距離相等,三角形的面積求法等知識,重點掌握平行線分線段成比例定理,難點是作輔助線求三角形的面積.15、2【解析】解:當(dāng)點P與B重合時,BA′取最大值是3,當(dāng)點Q與D重合時(如圖),由勾股定理得A′C=4,此時BA′取最小值為1.則點A′在BC邊上移動的最大距離為3-1=2.16、55°【分析】這道題可以根據(jù)CD為斜邊AB的中線得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,則∠BCD=90°-35°=55°.【詳解】如圖,∵CD為斜邊AB的中線∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°則∠BCD=90°-35°=55°故填:55°.【點睛】此題主要考查三角形內(nèi)角度求解,解題的關(guān)鍵是熟知直角三角形的性質(zhì).17、【分析】利用二次函數(shù)的性質(zhì)得到拋物線開口向下,則a-1<0,然后解不等式即可.【詳解】∵拋物線y=(a-1)x1在對稱軸左側(cè)的部分是上升的,

∴拋物線開口向下,

∴a-1<0,解得a<1.

故答案為a<1.【點睛】此題考查二次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于掌握二次項系數(shù)a決定拋物線的開口方向和大?。?dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時,對稱軸在y軸左;當(dāng)a與b異號時,對稱軸在y軸右.18、1【分析】利用一元二次方程根與系數(shù)的關(guān)系求出,即可求得答案.【詳解】∵是一元二次方程的兩個實數(shù)根,∴,,∴,故答案為:1.【點睛】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,方程的兩個根為,則,.三、解答題(共78分)19、(1)=;(2)成立,證明見解析;(3)135°.【分析】試題(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)由旋轉(zhuǎn)構(gòu)造出△CPB≌△CEA,再用勾股定理計算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,再簡單計算即可.【詳解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為=,(2)成立.證明:由①易知AD=AE,∴由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如圖,將△CPB繞點C旋轉(zhuǎn)90°得△CEA,連接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【點睛】考點:幾何變換綜合題;平行線平行線分線段成比例.20、【分析】用頂點式表達式,把點(1,-2)代入表達式求得a即可.【詳解】解:用頂點式表達式:y=a(x﹣2)2+1,把點(1,﹣2)代入表達式,解得:a=﹣3,∴函數(shù)表達式為:y=﹣3(x﹣2)2+1=﹣3x2+12x﹣1.【點睛】考查的是求函數(shù)表達式,本題用頂點式表達式較為簡便.21、(1)0.3,4;(2)見解析;(3)198;(4).【分析】(1)由第一組的頻數(shù)和頻率得到總?cè)藬?shù),乘以0.2即可得b的值,用1?0.15?0.35?0.20可得a的值;(2)根據(jù)表格中第二組的數(shù)據(jù)將直方圖補充完整;

(3)利用樣本估計總體的知識求解即可得答案;

(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖得所有等可能的結(jié)果與所選兩人正好都是甲班學(xué)生的情況,再利用概率公式即可求答案.【詳解】解:(1)a=1?0.15?0.35?0.20=0.3;總?cè)藬?shù)為:3÷0.15=20(人),b=20×0.20=4(人);故答案為:0.3,4;(2)補全統(tǒng)計圖如圖:(3)估計仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有:360×(0.35+0.20)=198(人);(4)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學(xué)生的有6種情況,∴所選兩人正好都是甲班學(xué)生的概率P=.【點睛】本題考查統(tǒng)計圖與概率的計算,找到統(tǒng)計圖中數(shù)據(jù)的對應(yīng)關(guān)系是解題的關(guān)鍵.22、(1)剩余木料的面積為6dm1;(1)1.【分析】(1)先確定兩個正方形的邊長,然后結(jié)合圖形解答即可;(1)估算和的大小,結(jié)合題意解答即可.【詳解】解:(1)∵兩個正方形的面積分別為18dm1和31dm1,∴這兩個正方形的邊長分別為3dm和4dm,∴剩余木料的面積為(4﹣3)×3=6(dm1);(1)4<3<4.5,1<<1,∴從剩余的木料中截出長為1.5dm,寬為ldm的長方形木條,最多能截出1塊這樣的木條,故答案為:1.【點睛】本題考查的是二次根式的應(yīng)用,掌握無理數(shù)的估算方法是解答本題的關(guān)鍵.23、(1)證明見解析;(2)AD=2.【解析】(1)如圖,連接OA,根據(jù)同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結(jié)論;(2)先證明OA⊥BC,由垂徑定理得:,F(xiàn)B=BC,根據(jù)勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,F(xiàn)B=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑定理的應(yīng)用,屬于基礎(chǔ)題,熟練掌握切線的判定方法是關(guān)鍵:有切線時,常?!坝龅角悬c連圓心得半徑,證垂直”.24、(1)證明見解析;(2).【分析】(1)只要證明∠DBF=∠DAC,即可判斷.

(2)利用相似三角形的性質(zhì)即可解決問題.【詳解】(1),,,,,;(2)由,可得,,,.【點睛】本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論