版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
菏澤市重點中學2024年數學高三第一學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,要得到函數的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.3.已知數列為等比數列,若,且,則()A. B.或 C. D.4.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.45.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.46.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.17.等比數列的前項和為,若,,,,則()A. B. C. D.8.已知實數x,y滿足,則的最小值等于()A. B. C. D.9.在各項均為正數的等比數列中,若,則()A. B.6 C.4 D.510.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.11.已知偶函數在區(qū)間內單調遞減,,,,則,,滿足()A. B. C. D.12.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.6二、填空題:本題共4小題,每小題5分,共20分。13.圓關于直線的對稱圓的方程為_____.14.在數列中,已知,則數列的的前項和為__________.15.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結論:①甲校學生成績的優(yōu)秀率大于乙校學生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系不確定.其中,所有正確結論的序號是____________.16.正項等比數列|滿足,且成等差數列,則取得最小值時的值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列{an}的前n項和為Sn,且(1)求數列{a(2)求數列{1Sn}的前18.(12分)已知函數.若在定義域內存在,使得成立,則稱為函數的局部對稱點.(1)若a,且a≠0,證明:函數有局部對稱點;(2)若函數在定義域內有局部對稱點,求實數c的取值范圍;(3)若函數在R上有局部對稱點,求實數m的取值范圍.19.(12分)已知直線l的極坐標方程為,圓C的參數方程為(為參數).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.20.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統(tǒng)計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望.21.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.22.(10分)已知函數.(1)若函數的圖象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
根據函數圖像平移原則,即可容易求得結果.【題目詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【題目點撥】本題考查函數圖像平移前后解析式的變化,屬基礎題.2、A【解題分析】
根據題意,可得幾何體,利用體積計算即可.【題目詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【題目點撥】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.3、A【解題分析】
根據等比數列的性質可得,通分化簡即可.【題目詳解】由題意,數列為等比數列,則,又,即,所以,,.故選:A.【題目點撥】本題考查了等比數列的性質,考查了推理能力與運算能力,屬于基礎題.4、D【解題分析】
用去換中的n,得,相加即可找到數列的周期,再利用計算.【題目詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【題目點撥】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.5、D【解題分析】
根據三視圖即可求得幾何體表面積,即可解得未知數.【題目詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【題目點撥】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.6、A【解題分析】
設點,則點,,利用向量數量積的坐標運算可得,利用二次函數的性質可得最值.【題目詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【題目點撥】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.7、D【解題分析】試題分析:由于在等比數列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數列.8、D【解題分析】
設,,去絕對值,根據余弦函數的性質即可求出.【題目詳解】因為實數,滿足,設,,,恒成立,,故則的最小值等于.故選:.【題目點撥】本題考查了橢圓的參數方程、三角函數的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.9、D【解題分析】
由對數運算法則和等比數列的性質計算.【題目詳解】由題意.故選:D.【題目點撥】本題考查等比數列的性質,考查對數的運算法則.掌握等比數列的性質是解題關鍵.10、C【解題分析】
利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!绢}目詳解】設,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【題目點撥】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。11、D【解題分析】
首先由函數為偶函數,可得函數在內單調遞增,再由,即可判定大小【題目詳解】因為偶函數在減,所以在上增,,,,∴.故選:D【題目點撥】本題考查函數的奇偶性和單調性,不同類型的數比較大小,應找一個中間數,通過它實現大小關系的傳遞,屬于中檔題.12、B【解題分析】
根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【題目詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【題目點撥】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
求出圓心關于直線的對稱點,即可得解.【題目詳解】的圓心為,關于對稱點設為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【題目點撥】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.14、【解題分析】
由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【題目詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【題目點撥】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.15、②③【解題分析】
根據局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【題目詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系,故③正確.故答案為:②③.【題目點撥】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.16、2【解題分析】
先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【題目詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【題目點撥】本題考查等比數列、等差數列的有關性質以及等比數列求積、求最值的有關運算,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)an=2n【解題分析】
(1)先設出數列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數列的和.【題目詳解】解:(1)設公差為d的等差數列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【題目點撥】本題考查的知識要點:數列的通項公式的求法及應用,裂項相消法在數列求和中的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.18、(1)見解析(2)(3)【解題分析】
(1)若函數有局部對稱點,則,即有解,即可求證;(2)由題可得在內有解,即方程在區(qū)間上有解,則,設,利用導函數求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設,則可變形為方程在區(qū)間內有解,進而求解即可.【題目詳解】(1)證明:由得,代入得,則得到關于x的方程,由于且,所以,所以函數必有局部對稱點(2)解:由題,因為函數在定義域內有局部對稱點所以在內有解,即方程在區(qū)間上有解,所以,設,則,所以令,則,當時,,故函數在區(qū)間上單調遞減,當時,,故函數在區(qū)間上單調遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內有解,需滿足條件:,即,得【題目點撥】本題考查函數的局部對稱點的理解,利用導函數研究函數的最值問題,考查轉化思想與運算能力.19、(1).x2+y2=1.(2)16【解題分析】
(1)直接利用極坐標方程和參數方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【題目詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【題目點撥】本題考查了極坐標方程和參數方程,圓的弦長,意在考查學生的計算能力和轉化能力.20、(1)(2)見解析,【解題分析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數學期望.【題目詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、丙兩小組的學生人數分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【題目點撥】此題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.21、(1)證明見解析(2)【解題分析】
(1)連接,設,連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【題目詳解】(1)連接,設,連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時用電安全隱患排查
- 2024-2025學年八年級上學期地理期中模擬試卷(人教版+含答案解析)
- 江蘇省徐州市銅山區(qū)2023-2024學年九年級上學期期中語文試卷(含答案解析)
- 小學三年級上冊生活生命與安全教案
- 高三心理健康教育教案匯編
- 幼兒園中班安全教育教案28篇
- 三年級心理健康教育備課
- 2024年人教版中考英語如何提升A卷閱讀理解能力練習(無答案)
- 2024年福建省新高考生物試卷真題(含答案解析)
- 常見感染性疾病曹彬
- 護理員培訓-課件
- 班主任經驗交流-課件(共18張)
- 7的乘法口訣(省一等獎)課件
- 1.《鄭人買履》課件PPT
- 謝公與人圍棋文言文閱讀答案
- 肝臟特殊部位腫瘤消融治療的策略課件
- 旅游學 教學大綱、教案、課后習題答案(李天元)
- 土建工程招標文件范本
- 《中外美術史》課件14文藝復興美術
- 隧道施工監(jiān)控量測方案及措施
- 某公司生產材料采購單(doc2頁)
評論
0/150
提交評論