2024年浙江省嘉興市七校數(shù)學高三第一學期期末統(tǒng)考模擬試題含解析_第1頁
2024年浙江省嘉興市七校數(shù)學高三第一學期期末統(tǒng)考模擬試題含解析_第2頁
2024年浙江省嘉興市七校數(shù)學高三第一學期期末統(tǒng)考模擬試題含解析_第3頁
2024年浙江省嘉興市七校數(shù)學高三第一學期期末統(tǒng)考模擬試題含解析_第4頁
2024年浙江省嘉興市七校數(shù)學高三第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024年浙江省嘉興市七校數(shù)學高三第一學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學家畢達哥拉斯公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.2.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.3.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.4.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.55.設,,,則,,三數(shù)的大小關系是A. B.C. D.6.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.7.A. B. C. D.8.已知方程表示的曲線為的圖象,對于函數(shù)有如下結論:①在上單調遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④9.在中,,則()A. B. C. D.10.在平行四邊形中,若則()A. B. C. D.11.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-3212.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.14.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側,可排成______種不同的音序.15.函數(shù)的單調增區(qū)間為__________.16.的展開式中的系數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.18.(12分)某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內更換濾芯的相關數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內需要更換的二級濾芯總數(shù),求的分布列及數(shù)學期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內購買各級濾芯所需總費用的期望值為決策依據(jù),試確定的值.19.(12分)已知凸邊形的面積為1,邊長,,其內部一點到邊的距離分別為.求證:.20.(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.21.(12分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.22.(10分)中,內角的對邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【題目詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),∴6和28不在同一組的概率.故選:C.【題目點撥】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應用.2、D【解題分析】

運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【題目詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【題目點撥】本題主要考查了正弦函數(shù)的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.3、C【解題分析】

由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【題目詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【題目點撥】本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎題.4、D【解題分析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【題目詳解】依題意得,,,因此該雙曲線的離心率.【題目點撥】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.5、C【解題分析】

利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質和計算公式,將a,b,c與,比較即可.【題目詳解】由,,,所以有.選C.【題目點撥】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎題,解題時選擇合適的中間值比較是關鍵,注意合理地進行等價轉化.6、C【解題分析】

易得,,又,平方計算即可得到答案.【題目詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【題目點撥】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.7、A【解題分析】

直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【題目詳解】本題正確選項:【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.8、C【解題分析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【題目詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【題目點撥】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的圖象與性質,函數(shù)的零點概念,考查了數(shù)形結合的數(shù)學思想.9、A【解題分析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【題目詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【題目點撥】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.10、C【解題分析】

由,,利用平面向量的數(shù)量積運算,先求得利用平行四邊形的性質可得結果.【題目詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.【題目點撥】本題主要考查向量的幾何運算以及平面向量數(shù)量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).11、A【解題分析】

利用等差數(shù)列的求和公式及等差數(shù)列的性質可以求得結果.【題目詳解】由,,得.選A.【題目點撥】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質,等差數(shù)列的等和性應用能快速求得結果.12、C【解題分析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【題目詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【題目點撥】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先求得復數(shù),再由復數(shù)模的計算公式即得.【題目詳解】,,則.故答案為:【題目點撥】本題考查復數(shù)的四則運算和求復數(shù)的模,是基礎題.14、1【解題分析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【題目詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側,此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側;③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【題目點撥】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.15、【解題分析】

先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調增區(qū)間.【題目詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調增區(qū)間為:.故答案為:.【題目點撥】本題考查導數(shù)在函數(shù)單調性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎題.16、3【解題分析】

分別用1和進行分類討論即可【題目詳解】當?shù)谝粋€因式取1時,第二個因式應取含的項,則對應系數(shù)為:;當?shù)谝粋€因式取時,第二個因式應取含的項,則對應系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【題目點撥】本題考查二項式定理中具體項對應系數(shù)的求解,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解題分析】

(1)求導,代入,求出在處的導數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【題目詳解】(1),當時,,,則在的切線方程為;(2)證明:令,解得或,①當時,恒成立,此時函數(shù)在上單調遞減,∴函數(shù)無極值;②當時,令,解得,令,解得或,∴函數(shù)在上單調遞增,在,上單調遞減,∴;③當時,令,解得,令,解得或,∴函數(shù)在上單調遞增,在,上單調遞減,∴,綜上,函數(shù)的極大值恒大于0.【題目點撥】本小題主要考查利用導數(shù)求切線方程,考查利用導數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學思想方法,屬于中檔題.18、(1)0.024;(2)分布列見解析,;(3)【解題分析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學期望;(3)由,且,可知若,則,或若,則,再分別計算兩種情況下的所需總費用的期望值比較大小即可.【題目詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設“一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16”為事件,因為一個一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個).或用分數(shù)表示也可以為89101112(個).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內購買各級濾芯所需總費用(單位:元)因為,且,1°若,則,(元);2°若,則,(元).因為,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內購買一級濾芯和二級濾芯所需費用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內購買的各級濾芯所需總費用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因為所以選擇方案:.【題目點撥】此題考查離散型隨機變量的分布列、數(shù)學期望的求法及應用,考查古典概型,考查運算求解能力,屬于中檔題.19、證明見解析【解題分析】

由已知,易得,所以利用柯西不等式和基本不等式即可證明.【題目詳解】因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論