版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為()A. B. C. D.2.過兩點,的直線的傾斜角為,則實數(shù)=()A.-1 B.1C. D.3.在中,角A,B,C所對的邊分別為a,b,c,,,,則等于()A. B. C. D.14.記Sn為等差數(shù)列{an}的前A.a(chǎn)n=2n-5 B.a(chǎn)n=3n-105.某實驗單次成功的概率為0.8,記事件A為“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”,現(xiàn)采用隨機模擬的方法估計事件4的概率:先由計算機給出0~9十個整數(shù)值的隨機數(shù),指定0,1表示單次實驗失敗,2,3,4,5,6,7,8,9表示單次實驗成功,以3個隨機數(shù)為組,代表3次實驗的結(jié)果經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),如下表:752029714985034437863694141469037623804601366959742761428261根據(jù)以上方法及數(shù)據(jù),估計事件A的概率為()A.0.384 B.0.65 C.0.9 D.0.9046.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.247.的內(nèi)角的對邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.8.若函數(shù)的圖象可由函數(shù)的圖象向右平移個單位長度變換得到,則的解析式是()A. B.C. D.9.已知集合,,,則()A. B. C. D.10.在正方體中,E,F(xiàn),G,H分別是,,,的中點,K是底面ABCD上的動點,且平面EFG,則HK與平面ABCD所成角的正弦值的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.下列結(jié)論中正確的是______.(1)將圖像向左平移個單位,再將所有點的橫坐標擴大為原來的倍,得到的圖像;(2)將圖像上所有點的橫坐標擴大為原來的倍,再將圖像向左平移個單位,得到的圖像;(3)將圖像上所有點的橫坐標擴大為原來的倍,再將圖像向左平移個單位,得到的圖像;(4)將圖像上所有點的橫坐標變?yōu)樵瓉淼谋?,再將圖像向左平移個單位,得到的圖像;(5)將圖像向左平移個單位,再將所有點的橫坐標擴大為原來的倍,得到的圖像;12.已知,,,若,則__________.13.把數(shù)列的各項排成如圖所示三角形狀,記表示第m行、第n個數(shù)的位置,則在圖中的位置可記為____________.14.已知直線y=b(0<b<1)與函數(shù)f(x)=sinωx(ω>0)在y軸右側(cè)依次的三個交點的橫坐標為x1=,x2=,x3=,則ω的值為______15.在△ABC中,點M,N滿足,若,則x=________,y=________.16.為了研究問題方便,有時將余弦定理寫成:,利用這個結(jié)構(gòu)解決如下問題:若三個正實數(shù),滿足,,,則_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.18.在中,內(nèi)角A,B,C所對的邊分別為a,b,c;已知.(1)求角B的大小;(2)若外接圓的半徑為2,求面積的最大值.19.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.20.設全集是實數(shù)集,集合,.(1)若,求實數(shù)的取值范圍;(2)若,求.21.已知函數(shù),求其定義域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)圓錐的體積求出底面圓的半徑和高,求出母線長,即可計算圓錐的表面積.【詳解】圓錐的高和底面半徑之比,∴,又圓錐的體積,即,解得;∴,母線長為,則圓錐的表面積為.故選:D.【點睛】本題考查圓錐的體積和表面積公式,考查計算能力,屬于基礎題.2、A【解析】
根據(jù)兩點的斜率公式及傾斜角和斜率關系,即可求得的值.【詳解】過兩點,的直線斜率為由斜率與傾斜角關系可知即解得故選:A【點睛】本題考查了兩點間的斜率公式,直線的斜率與傾斜角關系,屬于基礎題.3、D【解析】
根據(jù)題意,由正弦定理得,再把,,代入求解.【詳解】由正弦定理,得,所以.故選:D【點睛】本題主要考查了正弦定理的應用,還考查了運算求解的能力,屬于基礎題.4、A【解析】
等差數(shù)列通項公式與前n項和公式.本題還可用排除,對B,a5=5,S4=4(-7+2)【詳解】由題知,S4=4a1+【點睛】本題主要考查等差數(shù)列通項公式與前n項和公式,滲透方程思想與數(shù)學計算等素養(yǎng).利用等差數(shù)列通項公式與前n項公式即可列出關于首項與公差的方程,解出首項與公差,在適當計算即可做了判斷.5、C【解析】
由隨機模擬實驗結(jié)合圖表計算即可得解.【詳解】由隨機模擬實驗可得:“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中最多成功1次”共141,601兩組隨機數(shù),則“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”共組隨機數(shù),即事件的概率為,故選.【點睛】本題考查了隨機模擬實驗及識圖能力,屬于中檔題.6、D【解析】設放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D7、A【解析】
出現(xiàn)面積,可轉(zhuǎn)化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【點睛】本題很靈活,在常數(shù)4的處理問題上有點巧妙,然后再借助余弦定理及正弦定理,難度較大.8、A【解析】
先化簡函數(shù),然后再根據(jù)圖象平移得.【詳解】由已知,∴.故選A.【點睛】本題考查兩角和的正弦公式,考查三角函數(shù)的圖象平移變換,屬于基礎題.9、C【解析】由題意得,因為,所以,所以,故,故選C.10、A【解析】
根據(jù)題意取的中點,可得平面平面,從而可得K在上移動,平面,即可HK與平面ABCD所成角中最小的為【詳解】如圖,取的中點,連接,由E,F(xiàn),G,H分別是,,,的中點,所以,,且,則平面平面,若K是底面ABCD上的動點,且平面EFG,則K在上移動,由正方體的性質(zhì)可知平面,所以HK與平面ABCD所成角中最小的為,不妨設正方體的邊長為,在中,.故選:A【點睛】本題考查了求線面角,同時考查了面面平行的判定定理,解題的關鍵是找出線面角,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(3)【解析】
根據(jù)三角函數(shù)圖像伸縮變換與平移變換的原則,逐項判斷,即可得出結(jié)果.【詳解】(1)將圖像向左平移個單位,得到的圖像,再將所有點的橫坐標擴大為原來的倍,得到的圖像;(1)正確;(2)將圖像上所有點的橫坐標擴大為原來的倍,得到的圖像,再將圖像向左平移個單位,得到的圖像;(2)錯;(3)將圖像上所有點的橫坐標擴大為原來的倍,得到的圖像,再將圖像向左平移個單位,得到的圖像;(3)正確;(4)將圖像上所有點的橫坐標變?yōu)樵瓉淼谋?,得到的圖像,再將圖像向左平移個單位,得到的圖像;(4)錯;(5)將圖像向左平移個單位,得到的圖像,再將所有點的橫坐標擴大為原來的倍,得到的圖像;(5)錯;故答案為(1)(3)【點睛】本題主要考查三角函數(shù)的圖像變換,熟記圖像變換原則即可,屬于常考題型.12、-3【解析】由可知,解得,13、【解析】
利用第m行共有個數(shù),前m行共有個數(shù),得的位置即可求解【詳解】因為第m行共有個數(shù),前m行共有個數(shù),所以應該在第11行倒數(shù)第二個數(shù),所以的位置為.故答案為:【點睛】本題考查等差數(shù)列的通項和求和公式,發(fā)現(xiàn)每行個數(shù)成等差是關鍵,是基礎題14、1【解析】
由題得函數(shù)的周期為解之即得解.【詳解】由題得函數(shù)的周期為.故答案為1【點睛】本題主要考查三角函數(shù)的圖像和性質(zhì),考查三角函數(shù)的周期,意在考查學生對這些知識的理解掌握水平和分析推理能力.15、【解析】特殊化,不妨設,利用坐標法,以A為原點,AB為軸,為軸,建立直角坐標系,,,則,.考點:本題考點為平面向量有關知識與計算,利用向量相等解題.16、【解析】
設的角、、的對邊分別為、、,在內(nèi)取點,使得,設,,,利用余弦定理得出的三邊長,由此計算出的面積,再利用可得出的值.【詳解】設的角、、的對邊分別為、、,在內(nèi)取點,使得,設,,,由余弦定理得,,同理可得,,,則,的面積為,另一方面,解得,故答案為.【點睛】本題考查余弦定理的應用,問題的關鍵在于將題中的等式轉(zhuǎn)化為余弦定理,并轉(zhuǎn)化為三角形的面積來進行計算,考查化歸與轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解析】
(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計算出的值.【詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【點睛】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時要利用三角恒等變換思想將三角函數(shù)的解析式化簡,利用正弦、余弦函數(shù)的性質(zhì)求解,考查運算求解能力,屬于中等題.18、(1)(2)【解析】
(1)利用正弦定理與余弦的差角公式運算求解即可.(2)根據(jù)正弦定理可得,再利用余弦定理與基本不等式求得再代入面積求最大值即可.【詳解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)結(jié)合(1)由正弦定理可知,由余弦定理可知,所以當且僅當時等號成立,所以,所以面積的最大值為.【點睛】本題主要考查了正余弦定理與三角形面積公式在解三角形中的運用.同時考查了根據(jù)基本不等式求解三角形面積的最值問題.屬于中檔題.19、(1);(2)【解析】
(1)直接利用任意角的三角函數(shù)的定義,求得的值.(2)利用誘導公式化簡所給的式子,再把代入,求得結(jié)果.【詳解】解:(1)因為角的終邊經(jīng)過點由三角函數(shù)的定義可知.(2)由(1)知,.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導公式,屬于基礎題.20、(1)或(2)當時,;當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學2024-2025學年度教學計劃
- 長沙環(huán)境保護職業(yè)技術學院《天線理論與技術》2023-2024學年第一學期期末試卷
- 云南交通運輸職業(yè)學院《工程軟件應用》2023-2024學年第一學期期末試卷
- 業(yè)務操作-房地產(chǎn)經(jīng)紀人《業(yè)務操作》深度自測卷2
- 人教版三年級下冊數(shù)學第四單元筆算乘法同步練習(含答案)
- 四川省綿陽市綿陽中學2024-2025學年高一上學期1月選拔測試(期末)數(shù)學試題(含答案)
- 二零二五年建筑外墻保溫材料研發(fā)與市場分析合作協(xié)議3篇
- 二零二五版地產(chǎn)項目可持續(xù)發(fā)展策劃與管理合同3篇
- 二零二五版房屋買賣合同貸款服務協(xié)議書3篇
- 二零二五年度煤炭買賣合同書2篇
- 專題6.8 一次函數(shù)章末測試卷(拔尖卷)(學生版)八年級數(shù)學上冊舉一反三系列(蘇科版)
- GB/T 4167-2024砝碼
- 老年人視覺障礙護理
- 《腦梗塞的健康教育》課件
- 《請柬及邀請函》課件
- 遼寧省普通高中2024-2025學年高一上學期12月聯(lián)合考試語文試題(含答案)
- 《個體防護裝備安全管理規(guī)范AQ 6111-2023》知識培訓
- 青海原子城的課程設計
- 2023年年北京市各區(qū)初三語文一模分類試題匯編 - 作文
- 常州大學《新媒體文案創(chuàng)作與傳播》2023-2024學年第一學期期末試卷
- 麻醉蘇醒期躁動患者護理
評論
0/150
提交評論