版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,點是內(nèi)(包括邊界)的一動點,且,則的最大值是()A. B. C. D.2.直線是圓在處的切線,點是圓上的動點,則點到直線的距離的最小值等于()A.1 B. C. D.23.函數(shù)的圖像與函數(shù),的圖像的交點個數(shù)為()A. B. C. D.4.已知圓,直線,點在直線上.若存在圓上的點,使得(為坐標原點),則的取值范圍是A. B. C. D.5.中,下列結(jié)論:①若,則,②,③,④若是銳角三角形,則,其中正確的個數(shù)是()A.1 B.2 C.3 D.46.現(xiàn)有1瓶礦泉水,編號從1至1.若從中抽取6瓶檢驗,用系統(tǒng)抽樣方法確定所抽的編號為()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,307.將函數(shù)(其中)的圖象向右平移個單位,若所得圖象與原圖象重合,則不可能等于()A.0 B. C. D.8.已知實數(shù)滿足且,則下列選項中不一定成立的是()A. B. C. D.9.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或310.直線的傾斜角的大小為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的反函數(shù)為____________.12.函數(shù)的遞增區(qū)間是__________.13.若,,則___________.14.設(shè)向量,定義一種向量積:.已知向量,點P在的圖象上運動,點Q在的圖象上運動,且滿足(其中O為坐標原點),則的單調(diào)增區(qū)間為________.15.已知三個頂點的坐標分別為,若⊥,則的值是______.16.在等比數(shù)列中,,的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角的對邊分別為,已知.(1)求;(2)若,求邊上的高的長.18.設(shè)等差數(shù)列的前n項和為,,.(1)求;(2)設(shè),求數(shù)列的前n項和.19.化簡.20.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當四棱錐的體積最大時,求AM與CD所成的角.21.已知向量,.(1)當為何值時,與垂直?(2)若,,且三點共線,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)分析得出點的軌跡為線段,結(jié)合圖形即可得到的最大值.【詳解】如圖:取,,,點是內(nèi)(包括邊界)的一動點,且,根據(jù)平行四邊形法則,點的軌跡為線段,則的最大值是,在中,,,,,故選:B【點睛】此題考查利用向量方法解決平面幾何中的線段長度最值問題,數(shù)形結(jié)合處理可以避免純粹的計算,降低難度.2、D【解析】
先求得切線方程,然后用點到直線距離減去半徑可得所求的最小值.【詳解】圓在點處的切線為,即,點是圓上的動點,圓心到直線的距離,∴點到直線的距離的最小值等于.故選D.【點睛】圓中的最值問題,往往轉(zhuǎn)化為圓心到幾何對象的距離的最值問題.此類問題是基礎(chǔ)題.3、A【解析】
在同一坐標系中畫出兩函數(shù)的圖象,根據(jù)圖象得到交點個數(shù).【詳解】可得兩函數(shù)圖象如下圖所示:兩函數(shù)共有個交點本題正確選項:【點睛】本題考查函數(shù)交點個數(shù)的求解,關(guān)鍵是能夠根據(jù)兩函數(shù)的解析式,通過平移和翻折變換等知識得到函數(shù)的圖象,采用數(shù)形結(jié)合的方式得到結(jié)果.4、B【解析】
根據(jù)條件若存在圓C上的點Q,使得為坐標原點),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點P,圓上有一動點Q,在PQ與圓相切時取得最大值.
如果OP變長,那么可以獲得的最大值將變小.可以得知,當,且PQ與圓相切時,,
而當時,Q在圓上任意移動,存在恒成立.
因此滿足,就能保證一定存在點Q,使得,否則,這樣的點Q是不存在的,
點在直線上,,即
,
,
計算得出,,
的取值范圍是,
故選B.考點:正弦定理、直線與圓的位置關(guān)系.5、C【解析】
根據(jù)正弦定理與誘導(dǎo)公式,以及正弦函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】①在中,因為,所以,所以,故①正確;②,故②正確;③,故③錯誤;④若是銳角三角形,則,均為銳角,因為正弦函數(shù)在上單調(diào)遞增,所以,故④正確;故選C【點睛】本題主要考查命題真假的判定,熟記正弦定理,誘導(dǎo)公式等即可,屬于??碱}型.6、A【解析】
根據(jù)系統(tǒng)抽樣原則,可知編號成公差為的等差數(shù)列,觀察選項得到結(jié)果.【詳解】根據(jù)系統(tǒng)抽樣原則,可知所抽取編號應(yīng)成公差為的等差數(shù)列選項編號公差為;選項編號不成等差;選項編號公差為;可知錯誤選項編號滿足公差為的等差數(shù)列,正確本題正確選項:【點睛】本題考查抽樣方法中的系統(tǒng)抽樣,關(guān)鍵是明確系統(tǒng)抽樣的原則和特點,屬于基礎(chǔ)題.7、D【解析】由題意,所以,因此,從而,可知不可能等于.8、D【解析】
由題設(shè)條件可以得到,從而可判斷A,B中的不等式都是正確的,再把題設(shè)變形后可得,從而C中的不等式也是成立的,當,D中的不等式不成立,而時,它又是成立的,故可得正確選項.【詳解】因為且,故,所以,故A正確;又,故,故B正確;而,故,故C正確;當時,,當時,有,故不一定成立,綜上,選D.【點睛】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.9、D【解析】
根據(jù)直線的平行關(guān)系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗,當或時,兩條直線均平行.故選:D【點睛】此題考查根據(jù)直線平行關(guān)系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.10、B【解析】
由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先求出在區(qū)間的值域,再由表示的含義,得到所求函數(shù)的反函數(shù).【詳解】因為,所以,.所以的反函數(shù)是.故答案為:【點睛】本題主要考查反函數(shù)定義,同時考查了三角函數(shù)的值域問題,屬于簡單題.12、;【解析】
先利用輔助角公式對函數(shù)化簡,由可求解.【詳解】函數(shù),由,可得,所以函數(shù)的單調(diào)增區(qū)間為.故答案為:【點睛】本題考查了輔助角公式、正弦函數(shù)的圖像與性質(zhì),需熟記公式與性質(zhì),屬于基礎(chǔ)題.13、【解析】
將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點睛】本題考查利用兩角和的正弦公式求值,解題的關(guān)鍵就是將等式進行平方,結(jié)合等式結(jié)構(gòu)進行變形計算,考查運算求解能力,屬于中等題.14、【解析】
設(shè),,由求出的關(guān)系,用表示,并把代入即得,后利用余弦函數(shù)的單調(diào)性可得增區(qū)間.【詳解】設(shè),,由得:,∴,,∵,∴,,即,令,得,∴增區(qū)間為.故答案為:.【點睛】本題考查新定義,正確理解新定義運算是解題關(guān)鍵.考查三角函數(shù)的單調(diào)性.利用新定義建立新老圖象間點的聯(lián)系,求出新函數(shù)的解析式,結(jié)合余弦函數(shù)性質(zhì)求得增區(qū)間.15、【解析】
求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標表示、數(shù)量積運算,要注意向量坐標與點坐標的區(qū)別.16、【解析】
由等比中項,結(jié)合得,化簡即可.【詳解】由等比中項得,得,設(shè)等比數(shù)列的公比為,化簡.故答案為:4【點睛】本題考查了等比中項的性質(zhì),通項公式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)首先由正弦定理,我們可以將條件化成角度問題,再通過兩角和差的正弦公式,即可以得出的正切值,又因為在三角形中,從而求出的值.(2)由第一問得出,我們能求出,而,從而求出.【詳解】(1)根據(jù)題意因為,所以得,即所以,又因為所以.(2)因為所以又的面積為:可得:【點睛】解三角形題中,我們常根據(jù)邊的齊次,會利用正弦定理進行邊化角,然后通過恒等變形,變成角相關(guān)等量關(guān)系,作為面積問題,我們初中更多是用底與高的處理,高中能用正弦形式表示,兩者統(tǒng)一一起,又能得出相應(yīng)的等量關(guān)系.18、(1)(2)【解析】
(1)在等差數(shù)列中根據(jù),,可求得其首項與公差,從而可求得;(2)可證明為等比數(shù)列,利用等比數(shù)列的求和公式計算即可.【詳解】(1);(2),所以.【點睛】本題考查等比數(shù)列的前項和,著重考查等差數(shù)列的性質(zhì)與通項公式及等比數(shù)列的前項和公式,屬于基礎(chǔ)題.19、【解析】
利用誘導(dǎo)公式進行化簡,即可得到答案.【詳解】原式.【點睛】本題考查誘導(dǎo)公式的應(yīng)用,考查運算求解能力,求解時注意奇變偶不變,符號看象限這一口訣的應(yīng)用.20、(1)證明見解析(2)【解析】
(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當M為半圓弧CD的中點時,四棱錐的體積最大,此時,過點M作MOCD于點E,平面CDM平面ABCDMO平面ABCD,即MO為四棱錐的高又底面ABCD面積為定值2,AM與CD所成的角即AM與AB所成的角,求得,三角形為正三角形,,故AM與CD所成的角為【點睛】本題主要考查異面直線成的角,面面垂直的判定定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度海南省農(nóng)村土地租賃合同2篇
- 湖北2025年湖北省空間規(guī)劃研究院招聘專業(yè)技術(shù)人員筆試歷年參考題庫附帶答案詳解
- 昭通云南昭通水富市醫(yī)共體總醫(yī)院兩碗分院招聘編外衛(wèi)生專業(yè)技術(shù)人員筆試歷年參考題庫附帶答案詳解
- 安徽2025年安徽省兒童醫(yī)院招聘高層次人才39人筆試歷年參考題庫附帶答案詳解
- 天津2025年天津市科技創(chuàng)新發(fā)展中心招聘4人筆試歷年參考題庫附帶答案詳解
- 2025年湖南湘西州古丈縣茶城發(fā)展投資有限責任公司招聘筆試參考題庫附帶答案詳解
- 2025年度退休人員再就業(yè)勞動合同范本6篇
- 2025至2031年中國螺旋藻膠囊行業(yè)投資前景及策略咨詢研究報告
- 2025年廣西桂林臨桂區(qū)應(yīng)急管理局招聘10人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年廣西柳州柳城縣直事業(yè)單位招聘普通高校畢業(yè)生31人筆試高頻重點提升(共500題)附帶答案詳解
- 幼兒園反恐防暴技能培訓(xùn)內(nèi)容
- 食品企業(yè)質(zhì)檢員聘用合同
- 中醫(yī)診所內(nèi)外部審計制度
- 自然辯證法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年國家危險化學(xué)品經(jīng)營單位安全生產(chǎn)考試題庫(含答案)
- 護理員技能培訓(xùn)課件
- 家庭年度盤點模板
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年資格考試-WSET二級認證考試近5年真題集錦(頻考類試題)帶答案
- 試卷中國電子學(xué)會青少年軟件編程等級考試標準python三級練習(xí)
- 公益慈善機構(gòu)數(shù)字化轉(zhuǎn)型行業(yè)三年發(fā)展洞察報告
評論
0/150
提交評論