版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,,則()A. B.或 C.或 D.2.設公差不為零的等差數(shù)列an的前n項和為Sn.若a2+A.10 B.11 C.12 D.133.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差4.設是內任意一點,表示的面積,記,定義,已知,是的重心,則()A.點在內 B.點在內C.點在內 D.點與點重合5.已知正實數(shù)滿足,則的最大值為()A.2 B. C.3 D.6.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.7.化簡結果為()A. B. C. D.8.設實數(shù)滿足約束條件,則的最大值為()A. B.9 C.11 D.9.如圖,矩形ABCD中,AB=2,AD=1,P是對角線AC上一點,,過點P的直線分別交DA的延長線,AB,DC于點M,E,N.若(m>0,n>0),則2m+3n的最小值是()A. B.C. D.10..若且,直線不通過()A.第一象限 B.第二象限 C.第三象限 D.第四象限,二、填空題:本大題共6小題,每小題5分,共30分。11.某單位有200名職工,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1-200編號,并按編號順序平均分為40組(1-5號,6-10號…,196-200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是12.設奇函數(shù)的定義域為R,且對任意實數(shù)滿足,若當∈[0,1]時,,則____.13.觀察下列等式:(1);(2);(3);(4),……請你根據(jù)給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復),這個等式可以是__________________.(答案不唯一)14.中,內角、、所對的邊分別是、、,已知,且,,則的面積為_____.15.一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為.16.函數(shù)的最小正周期為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.18.如圖,已知圓:,點.(1)求經(jīng)過點且與圓相切的直線的方程;(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.19.李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:單價(千元)銷量(百件)已知.(1)若變量具有線性相關關系,求產(chǎn)品銷量(百件)關于試銷單價(千元)的線性回歸方程;(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.(參考公式:線性回歸方程中的估計值分別為)20.已知函數(shù).(1)當時,判斷并證明函數(shù)的奇偶性;(2)當時,判斷并證明函數(shù)在上的單調性.21.的內角的對邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用正弦定理求出,然后利用三角形的內角和定理可求出.【詳解】由正弦定理得,得,,,則或.當時,由三角形的內角和定理得;當時,由三角形的內角和定理得.因此,或.故選B.【點睛】本題考查利用正弦定理和三角形的內角和定理求角,解題時要注意大邊對大角定理來判斷出角的大小關系,考查計算能力,屬于基礎題.2、C【解析】
由等差數(shù)列的前n項和公式Sn=n(a1+an)【詳解】∵S13=117,∴13a1+a132=117,∴a1【點睛】本題考查等差數(shù)列的性質求和前n項和公式及等差數(shù)列下標和的性質,屬于基礎題。3、A【解析】
可不用動筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設9位評委評分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學生對中位數(shù)、平均數(shù)、方差、極差本質的理解.4、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三個坐標分別為P分△ABC所得三個三角形的高與△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P離線段AB的距離最近,故點Q在△GAB內由分析知,應選A.5、B【解析】
由,然后由基本不等式可得最大值.【詳解】,當且僅當,即時,等號成立.∴所求最大值為.故選:B.【點睛】本題考查用基本不等式求最值,注意基本不等式求最值的條件:一正二定三相等.6、A【解析】
根據(jù)圓錐的底面圓周長等于半圓弧長可計算出圓錐底面圓半徑,由勾股定理可計算出圓錐的高,再利用錐體體積公式可計算出圓錐的體積.【詳解】設圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點睛】本題考查圓錐體積的計算,解題的關鍵就是要計算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計算,并分析出一些幾何等量關系,考查空間想象能力與計算能力,屬于中等題.7、A【解析】
根據(jù)指數(shù)冪運算法則進行化簡即可.【詳解】本題正確選項:【點睛】本題考查指數(shù)冪的運算,屬于基礎題.8、C【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】作出約束條件表示的可行域如圖,化目標函數(shù)為,聯(lián)立,解得,由圖可知,當直線過點時,z取得最大值11,故選:C.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.9、C【解析】設,則又當且僅當時取等號,故選點睛:在利用基本不等式求最值的時候,要特別注意“拆,拼,湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù)),“定”(不等式的另一邊必須為定值),“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.10、D【解析】
因為且,所以,,又直線可化為,斜率為,在軸截距為,因此直線過一二三象限,不過第四象限.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】試題分析:因為將全體職工隨機按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,因為第5組抽出的號碼為22,所以第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為1.考點:系統(tǒng)抽樣.點評:本題考查系統(tǒng)抽樣,在系統(tǒng)抽樣過程中得到的樣本號碼是最規(guī)則的一組編號.12、【解析】
根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉變到給定區(qū)間計算函數(shù)值.【詳解】因為,所以,所以,又因為,所以,則,故,又因為是奇函數(shù),所以,則.【點睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達式,記住一個原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.13、【解析】
觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關系和補角關系是解題的關鍵,屬于基礎題14、【解析】
由正弦定理邊角互化思想結合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點睛】本題考查正弦定理邊角互化思想的應用,考查利用余弦定理解三角形以及三角形面積公式的應用,解題時要結合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運算求解能力,屬于中等題.15、【解析】
設球的半徑為r,則,,,所以,故答案為.考點:圓柱,圓錐,球的體積公式.點評:圓柱,圓錐,球的體積公式分別為.16、【解析】
先將轉化為余弦的二倍角公式,再用最小正周期公式求解.【詳解】解:最小正周期為.故答案為【點睛】本題考查二倍角的余弦公式,和最小正周期公式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題可得,解出,,進而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.18、(1)或;(2).【解析】試題分析:(1)設直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關系確定最值試題解析:(1)當過點直線的斜率不存在時,其方程為,滿足條件.當切線的斜率存在時,設:,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長度的最大值為,最小值為,所以線段長度的取值范圍為.19、(1)(2),,,,,【解析】
(1)先計算,將數(shù)據(jù)代入公式得到,,線性回歸方程為(2)利用(1)中所求的線性回歸方程,代入數(shù)據(jù)分別計算得到答案.【詳解】(1)由,可求得,故,,,,代入可得,,所以所求的線性回歸方程為.(2)利用(1)中所求的線性回歸方程可得,當時,;當時,;當時,;當時,;當時,;當時,.【點睛】本題考查了線性回歸方程的計算,求估計值,意在考查學生的計算能力和對于回歸方程公式的理解應用.20、(1)見解析;(2)見解析.【解析】
(1)將代入函數(shù)的解析式,利用函數(shù)的奇偶性定義來證明出函數(shù)的奇偶性;(2)將函數(shù)的解析式化為,然后利用函數(shù)單調性的定義證明出函數(shù)在上的單調性.【詳解】(1)當時,,函數(shù)為上的奇函數(shù).證明如下:,其定義域為,則,故函數(shù)為奇函數(shù);(2)當時,函數(shù)在上單調遞減.證明如下:,任取,則,又由,則,則有,即.因此,函數(shù)為上的減函數(shù).【點睛】本題考查函數(shù)單調性與奇偶性的判定與證明,在利用定義證明函數(shù)的單調性與奇偶性時,要熟悉定義法證明函數(shù)奇偶性與單調性的基本步驟,考查邏輯推理能力與計算能力,屬于中等題.21、(1);(2).【解析】
(1)利用正弦定理化簡題中等式,得到關于B的三角方程,最后根據(jù)A,B,C均為三角形內角解得.(2)根據(jù)三角形面積公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海洋探險活動海域租賃合同
- 新能源汽車無形資產(chǎn)管理辦法
- 音響租賃協(xié)議書范本
- 山林租賃合同:自然風光游覽
- 教育機構學生福利實施
- 外架班組施工安全生產(chǎn)管理策略
- 游泳池改造合同
- 2025年酶標免疫分析儀項目發(fā)展計劃
- 中央空調井水電設施施工合同
- 醫(yī)療援助愛心基金管理辦法
- 全國主要城市氣象參數(shù)
- 宣城消防鋼樓梯施工方案
- 框架柱的配筋計算二
- IPC-7530A-2017 CN群焊工藝溫度曲線指南(再流焊和波峰焊)
- 初期支護設計驗算
- 石關煤礦緊急避險系統(tǒng)管理制度及技術檔案匯編
- 醫(yī)院醫(yī)務科科長崗位競聘答辯PPT課件(帶內容)
- 2023年華僑、港澳、臺聯(lián)考高考語文試卷(含解析)
- 快上來吧要開車了課件
- 非織造學講義(大學期末復習資料)
- 《菜根譚》讀書分享
評論
0/150
提交評論