版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則()A. B.7 C. D.2.一組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以3,再減去30,得到一組新數(shù)據(jù),若求得新數(shù)據(jù)的平均數(shù)是3.6,方差是9.9,則原來數(shù)據(jù)的平均數(shù)和方差分別是()A.11.2,1.1 B.33.6,9.9 C.11.2,9.9 D.24.1,1.13.在中,所對的邊分別為,若,,,則()A. B. C.1 D.34.某賽季中,甲?乙兩名籃球隊員各場比賽的得分莖葉圖如圖所示,若甲得分的眾數(shù)為15,乙得分的中位數(shù)為13,則()A.15 B.16 C.17 D.185.中,,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形6.過點且與圓相切的直線方程為()A. B.或C.或 D.或7.與圓關(guān)于直線對稱的圓的方程為()A. B.C. D.8.若cosα=13A.13 B.-13 C.9.已知,且,,則()A. B. C. D.10.用數(shù)學(xué)歸納法證明不等式的過程中,由遞推到時,不等式左邊()A.增加了一項B.增加了兩項,C.增加了A中的一項,但又減少了另一項D.增加了B中的兩項,但又減少了另一項二、填空題:本大題共6小題,每小題5分,共30分。11.計算:______.12.在區(qū)間[-1,2]上隨機(jī)取一個數(shù)x,則x∈[0,1]的概率為.13.如圖,點為正方形邊上異于點的動點,將沿翻折成,使得平面平面,則下列說法中正確的是__________.(填序號)(1)在平面內(nèi)存在直線與平行;(2)在平面內(nèi)存在直線與垂直(3)存在點使得直線平面(4)平面內(nèi)存在直線與平面平行.(5)存在點使得直線平面14.住在同一城市的甲、乙兩位合伙人,約定在當(dāng)天下午4.00-5:00間在某個咖啡館相見商談合作事宜,他們約好當(dāng)其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________.15.已知關(guān)于的不等式的解集為,則__________.16.計算:=_______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)求證:(2)請利用(1)的結(jié)論證明:(3)請你把(2)的結(jié)論推到更一般的情形,使之成為推廣后的特例,并加以證明:(4)化簡:.18.如圖,在三棱柱中,側(cè)棱垂直于底面,,分別是的中點.(1)求證:平面;(2)求三棱錐的體積.19.若是的一個內(nèi)角,且,求的值.20.“中國人均讀書本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的本、法國的本、日本的本、猶太人的本少得多,是世界上人均讀書最少的國家”,這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書者進(jìn)行調(diào)查,將他們的年齡分成段:,,,,,后得到如圖所示的頻率分布直方圖.問:(1)估計在這名讀書者中年齡分布在的人數(shù);(2)求這名讀書者年齡的平均數(shù)和中位數(shù);(3)若從年齡在的讀書者中任取名,求這兩名讀書者年齡在的人數(shù)恰為的概率.21.已知函數(shù).(1)求(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由平方關(guān)系求得,再由商數(shù)關(guān)系求得,最后由兩角和的正切公式可計算.【詳解】,,,,.故選:D.【點睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關(guān)系.屬于基礎(chǔ)題.2、A【解析】
根據(jù)新數(shù)據(jù)所得的均值與方差,結(jié)合數(shù)據(jù)分析中的公式,即可求得原來數(shù)據(jù)的平均數(shù)和方差.【詳解】設(shè)原數(shù)據(jù)為則新數(shù)據(jù)為所以由題意可知,則,解得,故選:A.【點睛】本題考查了數(shù)據(jù)處理與簡單應(yīng)用,平均數(shù)與方差公式的簡單應(yīng)用,屬于基礎(chǔ)題.3、A【解析】
利用三角形內(nèi)角和為,得到,利用正弦定理求得.【詳解】因為,,所以,在中,,所以,故選A.【點睛】本題考查三角形內(nèi)角和及正弦定理的應(yīng)用,考查基本運(yùn)算求解能力.4、A【解析】
由圖可得出,然后可算出答案【詳解】因為甲得分的眾數(shù)為15,所以由莖葉圖可知乙得分?jǐn)?shù)據(jù)有7個,乙得分的中位數(shù)為13,所以所以故選:A【點睛】本題考查的是莖葉圖的知識,較簡單5、C【解析】
由平面向量數(shù)量積運(yùn)算可得,即,得解.【詳解】解:在中,,則,即,則為鈍角,所以為鈍角三角形,故選:C.【點睛】本題考查了平面向量數(shù)量積運(yùn)算,重點考查了向量的夾角,屬基礎(chǔ)題.6、C【解析】
分別考慮斜率存在和不存在兩種情況得到答案.【詳解】如圖所示:當(dāng)斜率不存在時:當(dāng)斜率存在時:設(shè)故答案選C【點睛】本題考查了圓的切線問題,忽略掉斜率不存在是容易發(fā)生的錯誤.7、A【解析】
設(shè)所求圓的圓心坐標(biāo)為,列出方程組,求得圓心關(guān)于的對稱點,即可求解所求圓的方程.【詳解】由題意,圓的圓心坐標(biāo),設(shè)所求圓的圓心坐標(biāo)為,則圓心關(guān)于的對稱點,滿足,解得,即所求圓的圓心坐標(biāo)為,且半徑與圓相等,所以所求圓的方程為,故選A.【點睛】本題主要考查了圓的方程的求解,其中解答中熟記圓的方程,以及準(zhǔn)確求解點關(guān)于直線的對稱點的坐標(biāo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、D【解析】
利用二倍角余弦公式cos2α=2【詳解】由二倍角余弦公式可得cos2α=2【點睛】本題考查二倍角余弦公式的應(yīng)用,著重考查學(xué)生對二倍角公式熟記和掌握情況,屬于基礎(chǔ)題.9、C【解析】
根據(jù)同角三角函數(shù)的基本關(guān)系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,兩角和差的正弦公式,屬于中檔題.10、D【解析】
根據(jù)題意,分別寫出和時,左邊對應(yīng)的式子,進(jìn)而可得出結(jié)果.【詳解】當(dāng)時,左邊,當(dāng)時,左邊,所以,由遞推到時,不等式左邊增加了,;減少了;故選:D【點睛】本題主要考查數(shù)學(xué)歸納法的應(yīng)用,熟記數(shù)學(xué)歸納法,會求增量即可,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用反三角函數(shù)運(yùn)算法則寫出結(jié)果即可.【詳解】解:.故答案為:.【點睛】本題考查反三角函數(shù)的運(yùn)算法則的應(yīng)用,屬于基礎(chǔ)題.12、【解析】
直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機(jī)取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關(guān)的幾何概型問題關(guān)鍵是計算問題的總長度以及事件的長度.13、(2)(4)【解析】
采用逐一驗證法,利用線面的位置關(guān)系判斷,可得結(jié)果.【詳解】(1)錯,若在平面內(nèi)存在直線與平行,則//平面,可知//,而與相交,故矛盾(2)對,如圖作,根據(jù)題意可知平面平面所以,作,點在平面,則平面,而平面,所以,故正確(3)錯,若平面,則,而所以平面,則,矛盾(4)對,如圖延長交于點連接,作//平面,平面,平面,所以//平面,故存在(5)錯,若平面,則又,所以平面所以,可知點在以為直徑的圓上又該圓與無交點,所以不存在.故答案為:(2)(4)【點睛】本題主要考查線線,線面,面面之間的關(guān)系,數(shù)形結(jié)合在此發(fā)揮重要作用,屬中檔題.14、【解析】
將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘).則相見需要滿足:畫出圖像,根據(jù)幾何概型公式得到答案.【詳解】根據(jù)題意:將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘)則相見需要滿足:畫出圖像:根據(jù)幾何概型公式:【點睛】本題考查了幾何概型的應(yīng)用,意在考查學(xué)生解決問題的能力.15、-2【解析】為方程兩根,因此16、【解析】試題分析:考點:兩角和的正切公式點評:本題主要考查兩角和的正切公式變形的運(yùn)用,抓住和角是特殊角,是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)證明見解析,(3),證明見解析(4)【解析】
(1)右邊余切化正切后,利用二倍角的正切公式變形可證;(2)將(1)的結(jié)果變形為,然后將所證等式的右邊的正切化為余切即可得證;(3)根據(jù)(1)(2)的規(guī)律可得結(jié)果;(4)由(3)的結(jié)果可得.【詳解】(1)證明:因為,所以(2)因為,所以,所以(3)一般地:,證明:因為所以,以此類推得(4).【點睛】本題考查了歸納推理,考查了同角公式,考查了二倍角的正切公式,屬于中檔題.18、(1)證明見解析(2)【解析】試題分析:(1)做輔助線,先證及四邊形為平行四邊形平面;(2)利用勾股定理求得.試題解析:(1)證明:取中點,連接,則∵是的中點,∴;∵是的中點,∴,∴四邊形為平行四邊形,∴,∵平面,平面,∴平面;(2)∵,∴,∴19、【解析】
本題首先可根據(jù)是的一個內(nèi)角以及得出和,然后對進(jìn)行平方并化簡可得,最后結(jié)合即可得出結(jié)果.【詳解】因為是的一個內(nèi)角,所以,,因為,所以,,所以,所以.【點睛】本題考查同角三角函數(shù)關(guān)系的應(yīng)用,考查的公式為,在運(yùn)算的過程中一定要注意角的取值范圍,考查推理能力,是簡單題.20、(1);(2);(3).【解析】
(1)識別頻率直方圖,注意其縱軸的意義;(2)在頻率直方圖中平均數(shù)是每組數(shù)據(jù)的組中值乘以頻率,中位數(shù)是排在最中間的數(shù);(3)求出古典概型中的基本事情總數(shù)和具體事件數(shù),利用比值求解.【詳解】(1)由頻率分布直方圖知,年齡在的頻率為所以,名讀書者年齡分布在的人數(shù)為人.(2)名讀書者年齡的平均數(shù)為:設(shè)中位數(shù)為,解之得,即名讀書者年齡的中位數(shù)為歲.(3)年齡在的讀書者有人,記為,;年齡在的讀數(shù)者有人,記為,,,從上述人中選出人,共有如下基本事件:,共有基本事件數(shù)為個,記選取的兩名讀者中恰好有一人年齡在中為事件,則事件包含的基本事件數(shù)為個:故.【點睛】本題考查識別頻率直方圖和樣本的數(shù)字特征,屬于基礎(chǔ)題.21、(1),的增區(qū)間是.(2).【解析】試題分析:(1)利用兩角和正弦公式和降冪公式化簡,得到的形式,利用公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度電影節(jié)開幕式演出委托合同樣本3篇
- 2024-2025學(xué)年揭陽市揭東縣數(shù)學(xué)三年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 企業(yè)快速響應(yīng)市場的組織結(jié)構(gòu)調(diào)整方案研究報告
- 農(nóng)業(yè)科技助力綠色生態(tài)農(nóng)業(yè)發(fā)展
- 2025中國鐵塔集團(tuán)江西分公司招聘22人高頻重點提升(共500題)附帶答案詳解
- 2025中國移動招聘在線統(tǒng)一筆試高頻重點提升(共500題)附帶答案詳解
- 2025中國電信青海黃南分公司招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國電信山東青島分公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 智慧教育相關(guān)行業(yè)投資方案范本
- 2025中國農(nóng)科院北京畜牧獸醫(yī)研究所奶產(chǎn)品質(zhì)量與風(fēng)險評估科技創(chuàng)新團(tuán)隊博士后崗公開招聘高頻重點提升(共500題)附帶答案詳解
- 泌尿外科診療指南
- 滬教牛津版英語2024七年級上冊全冊知識清單(記憶版)
- 高中地理選擇性必修2(綜合檢測卷)(附答案)-2022-2023學(xué)年高二上學(xué)期地理選擇性必修2
- 未成年消費(fèi)退款協(xié)議書范本
- 政協(xié)分組討論個人發(fā)言稿
- 2024年新蘇教版六年級上冊科學(xué)全冊知識點 (背誦用)
- DL∕T 5210.6-2019 電力建設(shè)施工質(zhì)量驗收規(guī)程 第6部分:調(diào)整試驗
- DL∕T 802.2-2017 電力電纜用導(dǎo)管 第2部分:玻璃纖維增強(qiáng)塑料電纜導(dǎo)管
- 錨索張拉記錄表
- 全國計算機(jī)等級考試二級Python復(fù)習(xí)備考題庫(含答案)
- 《生物安全培訓(xùn)》課件-2024鮮版
評論
0/150
提交評論