版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,,,,則等于()A. B. C. D.2.已知數(shù)列滿足,,則()A. B. C. D.3.若正實數(shù)x,y滿足不等式,則的取值范圍是()A. B. C. D.4.已知實數(shù)滿足,則的取值范圍是()A. B. C. D.5.與直線垂直于點的直線的一般方程是()A. B. C. D.6.在面積為S的平行四邊形ABCD內(nèi)任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.7.閱讀如圖所示的算法框圖,輸出的結(jié)果S的值為A.8 B.6 C.5 D.48.從裝有4個紅球和3個白球的袋中任取2個球,那么下列事件中,是對立事件的是()A.至少有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;恰好有2個白球 D.至少有1個白球;都是白球9.設(shè)函數(shù),,其中,.若,且的最小正周期大于,則()A., B.,C., D.,10.已知,所在平面內(nèi)一點P滿足,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.對于正項數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項公式為_____.12.函數(shù)的單調(diào)遞減區(qū)間是______.13.已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,且a1+b1=514.甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨立射擊一次,均中靶的概率為______.15.設(shè)滿足約束條件若目標函數(shù)的最大值為,則的最小值為_________.16.函數(shù)的定義域為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.各項均不相等的等差數(shù)列前項和為,已知,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.18.在中,角的對邊分別為,且.(1)求角的大小;(2)若,求的面積19.近年來,某地大力發(fā)展文化旅游創(chuàng)意產(chǎn)業(yè),創(chuàng)意維護一處古寨,幾年來,經(jīng)統(tǒng)計,古寨的使用年限x(年)和所支出的維護費用y(萬元)的相關(guān)數(shù)據(jù)如圖所示,根據(jù)以往資料顯示y對x呈線性相關(guān)關(guān)系.(1)求出y關(guān)于x的回歸直線方程;(2)試根據(jù)(1)中求出的回歸方程,預(yù)測使用年限至少為幾年時,維護費用將超過10萬元?參考公式:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計分別為.20.已知是夾角為的單位向量,且,.(1)求;(2)求與的夾角.21.設(shè)為數(shù)列的前項和,.(1)求證:數(shù)列是等比數(shù)列;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
直接利用等比數(shù)列公式計算得到答案.【詳解】故選:C【點睛】本題考查了等比數(shù)列的計算,屬于簡單題.2、A【解析】
由給出的遞推式變形,構(gòu)造出新的等比數(shù)列,由等比數(shù)列的通項公式求出的表達式,再利用等比數(shù)列的求和公式求解即可.【詳解】解:解:在數(shù)列中,
由,得,
,
,
則數(shù)列是以2為首項,以2為公比的等比數(shù)列,
.,故選:A.【點睛】本題考查了數(shù)列的遞推式,考查了等比關(guān)系的確定以及等比數(shù)列的求和公式,屬中檔題.3、B【解析】
試題分析:由正實數(shù)滿足不等式,得到如下圖陰影所示的區(qū)域:當過點時,,當過點時,,所以的取值范圍是.考點:線性規(guī)劃問題.4、D【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.【詳解】由線性約束條件作出可行域,如下圖三角形陰影部分區(qū)域(含邊界),令,直線:,平移直線,當過點時取得最大值,當過點時取得最小值,所以的取值范圍是.【點睛】本題主要考查線性規(guī)劃的應(yīng)用.本題先正確的作出不等式組表示的平面區(qū)域,再結(jié)合目標函數(shù)的幾何意義進行解答是解決本題的關(guān)鍵.5、A【解析】由已知可得這就是所求直線方程,故選A.6、A【解析】
轉(zhuǎn)化條件求出滿足要求的P點的范圍,求出面積比即可得解.【詳解】如圖,設(shè)P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【點睛】本題考查了幾何概型的概率計算,屬于基礎(chǔ)題.7、B【解析】
判斷框,即當執(zhí)行到時終止循環(huán),輸出.【詳解】初始值,代入循環(huán)體得:,,,輸出,故選A.【點睛】本題由于循環(huán)體執(zhí)行的次數(shù)較少,所以可以通過列舉每次執(zhí)行后的值,直到循環(huán)終止,從而得到的輸出值.8、A【解析】
根據(jù)對立事件的定義判斷.【詳解】從裝有4個紅球和3個白球的袋內(nèi)任取2個球,在A中,“至少有1個白球”與“都是紅球”不能同時發(fā)生且必有一個事件會發(fā)生,是對立事件.在B中,“至少有1個白球”與“至少有1個紅球”可以同時發(fā)生,不是互斥事件.在C中,“恰好有1個白球”與“恰好有2個白球”是互斥事件,但不是對立事件.在D中,“至少有1個白球”與“都是白球”不是互斥事件.故選:A.9、B【解析】
根據(jù)周期以及最值點和平衡位置點先分析的值,然后帶入最值點計算的值.【詳解】因為,,所以,則,所以,即,故;則,代入可得:且,所以.故選B.【點睛】(1)三角函數(shù)圖象上,最值點和平衡位置的點之間相差奇數(shù)個四分之一周期的長度;(2)計算的值時,注意選用最值點或者非特殊位置點,不要選用平衡位置點(容易多解).10、D【解析】
由平面向量基本定理及單位向量可得點在的外角平分線上,且點在的外角平分線上,,,在中,由正弦定理得得解.【詳解】因為所以,因為方向為外角平分線方向,所以點在的外角平分線上,同理,點在的外角平分線上,,,在中,由正弦定理得,故選:.【點睛】本題考查了平面向量基本定理及單位向量,考查向量的應(yīng)用,意在考查學生對這些知識的理解掌握水平.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。12、【解析】
求出函數(shù)的定義域,結(jié)合復(fù)合函數(shù)求單調(diào)性的方法求解即可.【詳解】由,解得令,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增函數(shù)在定義域內(nèi)單調(diào)遞增函數(shù)的單調(diào)遞減區(qū)間是故答案為:【點睛】本題主要考查了復(fù)合函數(shù)的單調(diào)性,屬于中檔題.13、1【解析】
根據(jù)等差數(shù)列的通項公式把abn轉(zhuǎn)化到a1+(bn-1)【詳解】S=[=[=na1=4n+n(n-1)故答案為:12【點睛】本題主要考查等差數(shù)列通項公式和前n項和的應(yīng)用,利用分組求和法是解決本題的關(guān)鍵.14、0.56【解析】
根據(jù)在一次射擊中,甲、乙同時射中目標是相互獨立的,利用相互獨立事件的概率乘法公式,即可求解.【詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【點睛】本題主要考查了相互獨立事件的概率乘法公式的應(yīng)用,其中解答中合理利用相互獨立的概率乘法公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、【解析】
試題分析:試題分析:由得,平移直線由圖象可知,當過時目標函數(shù)的最大值為,即,則,當且僅當,即時,取等號,故的最小值為.考點:1、利用可行域求線性目標函數(shù)的最值;2、利用基本不等式求最值.【方法點晴】本題主要考查可行域、含參數(shù)目標函數(shù)最優(yōu)解和均值不等式求最值,屬于難題.含參變量的線性規(guī)劃問題是近年來高考命題的熱點,由于參數(shù)的引入,提高了思維的技巧、增加了解題的難度,此類問題的存在增加了探索問題的動態(tài)性和開放性,此類問題一般從目標函數(shù)的結(jié)論入手,對目標函數(shù)變化過程進行詳細分析,對變化過程中的相關(guān)量的準確定位,是求最優(yōu)解的關(guān)鍵.16、【解析】試題分析:由題設(shè)可得,解之得,故應(yīng)填答案.考點:函數(shù)定義域的求法及運用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用等差數(shù)列的通項公式和等比數(shù)列的性質(zhì),可得,則可得通項公式.(2)根據(jù)(1)的結(jié)論可得,然后利用裂項相消求和,可得結(jié)果.【詳解】(1)因為各項均不相等,所以公差由等差數(shù)列通項公式且,所以,又成等比數(shù)列,所以,則,化簡得,所以即可得即(2)由(1)可得化簡可得由所以【點睛】本題主要考查利用裂項相消法求和,屬基礎(chǔ)題.18、(1);(2).【解析】
(1)根據(jù)正弦定理把題設(shè)等式中的邊換成相應(yīng)角的正弦,化簡整理可求得,進而求得;(2)根據(jù)余弦定理得,結(jié)合求得的值,進而由三角形的面積公式求得面積.【詳解】(1)根據(jù)正弦定理,又,.(2)由余弦定理得:,代入得,故面積為【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19、(1)(2)使用年限至少為14年時,維護費用將超過10萬元【解析】
(1)由已知圖形中的數(shù)據(jù)求得與的值,則線性回歸方程可求;(2)直接由求得的范圍得答案.【詳解】(1),,,.故線性回歸方程為;(2)由,解得.故使用年限至少為14年時,維護費用將超過10萬元.【點睛】本題考查線性回歸方程的求法,考查計算能力,是基礎(chǔ)題.20、(1)(2)【解析】試題分析:(1)根據(jù)題知,由向量的數(shù)量積公式進行運算即可,注意,在去括號的向量運算過程中可采用多項式的運算方法;(2)根據(jù)向量數(shù)量積公式,可先求出的值,又,從而可求出的值.試題解析:(1)==(2)21、(1)見解析;(2)見解析.【解析】
(1)令,由求出的值,再令,由得,將兩式相減并整理得,計算出為非零常數(shù)可證明出數(shù)列為等比數(shù)列;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年俱樂部安保人員雇傭合同2篇
- 2024年度服裝品牌股權(quán)轉(zhuǎn)讓與零售渠道合作合同3篇
- 2024年度互聯(lián)網(wǎng)企業(yè)人力資源戰(zhàn)略規(guī)劃與績效管理服務(wù)協(xié)議3篇
- 2024年度新疆油田公司火災(zāi)隱患整改合同3篇
- 2024年度個人健康養(yǎng)生借款合同3篇
- 2024年水果店承包經(jīng)營協(xié)議
- 2024年玻璃制品批發(fā)與安裝服務(wù)合同3篇
- 2024版屋頂綠化草皮種植與城市節(jié)能減排合同3篇
- 2024年度綜合性醫(yī)院護士專業(yè)人才培養(yǎng)合作聘用合同范本3篇
- 內(nèi)蒙古鴻德文理學院《飲食美學》2023-2024學年第一學期期末試卷
- 生命科學前沿技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年蘇州大學
- 2023年小兒推拿保健師考試真題試卷(含答案)
- 高血壓護理常規(guī)課件
- 心臟介入手術(shù)談話技巧
- 海南省三亞市吉陽區(qū)2022-2023學年六年級上學期期末數(shù)學試卷
- 辦公樓消防改造工程環(huán)境保護措施
- 2023-2024學年高一下學期家長會 課件
- 溯源與解讀:學科實踐即學習方式變革的新方向
- 班克街教育方案
- 護理教育改革與創(chuàng)新研究
- 知識點總結(jié)(知識清單)-2023-2024學年人教PEP版英語六年級上冊
評論
0/150
提交評論