版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ΔABC中,a,b,c分別為A,B,C的對邊,如果a,b,c成等差數(shù)列,B=30°,ΔABC的面積為32,那么b=A.1+32 B.1+3 C.2.秦九韶是我國南宋時期的數(shù)學(xué)家,在他所著的《數(shù)書九章》中提出的多項式求值的“秦九韶算法”,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法,求某多項式值的一個實例,若輸入的值分別為4和2,則輸出的值為()A.32 B.64 C.65 D.1303.已知,且,則()A. B. C. D.4.已知直三棱柱的所有棱長都相等,為的中點,則與所成角的余弦值為()A. B. C. D.5.下列角中終邊與相同的角是()A. B. C. D.6.已知菱形的邊長為,則()A. B. C. D.7.直線,,的斜率分別為,,,如圖所示,則()A. B.C. D.8.對一切實數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.9.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.10.等差數(shù)列,,,則此數(shù)列前項和等于().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊經(jīng)過點,則的值為____________.12.用列舉法表示集合__________.13.不等式的解集為________.14.若數(shù)列滿足,且對于任意的,都有,則___;數(shù)列前10項的和____.15.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………16.已知數(shù)列的前項和滿足,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,D為延長線上一點,且,,.(1)求的長度;(2)求的面積.18.如圖,三棱柱中,,D為AB上一點,且平面.(1)求證:;(2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,,求三樓柱的體積.19.已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,記數(shù)列的前項和為,數(shù)列的前項和為.(1)若,求序數(shù)的值;(2)若數(shù)列的公差,求數(shù)列的公比及.20.如圖所示,已知的斜邊長,現(xiàn)以斜邊橫在直線為軸旋轉(zhuǎn)一周,得到旋轉(zhuǎn)體.(1)當(dāng)時,求此旋轉(zhuǎn)體的體積;(2)比較當(dāng),時,兩個旋轉(zhuǎn)體表面積的大?。?1.已知.(1)解關(guān)于的不等式;(2)若不等式的解集為,求實數(shù),的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由余弦定理得b2==14ac=32?ac=6,因為a??,??考點:余弦定理;三角形的面積公式.2、C【解析】程序運行循環(huán)時變量值為:;;;,退出循環(huán),輸出,故選C.3、D【解析】
根據(jù)不等式的性質(zhì),一一分析選擇正誤即可.【詳解】根據(jù)不等式的性質(zhì),當(dāng)時,對于A,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若,則,故C錯誤;對于D,當(dāng)時,總有成立,故D正確;故選:D.【點睛】本題考查不等式的基本性質(zhì),屬于基礎(chǔ)題.4、D【解析】
取的中點,連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點,連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、B【解析】與30°的角終邊相同的角α的集合為{α|α=330°+k?360°,k∈Z}當(dāng)k=-1時,α=-30°,故選B6、D【解析】
由菱形可直接得出所求兩向量的模長及夾角,直接利用向量數(shù)量積公式即可.【詳解】由菱形的性質(zhì)可以得出:所以選擇D【點睛】直接考查向量數(shù)量積公式,屬于簡單題7、A【解析】
根據(jù)題意可得出直線,,的傾斜角滿足,由傾斜角與斜率的關(guān)系得出結(jié)果.【詳解】解:設(shè)三條直線的傾斜角為,根據(jù)三條直線的圖形可得,因為,當(dāng)時,,當(dāng)時,單調(diào)遞增,且,故,即故選A.【點睛】本題考查了直線的傾斜角與斜率的關(guān)系,解題的關(guān)鍵是熟悉正切函數(shù)的單調(diào)性.8、A【解析】
時,恒成立.時,原不等式等價于.由的最小值是2,可得,即.選A.9、A【解析】
連接和,由二面角的定義得出,由結(jié)合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.10、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意和任意角的三角函數(shù)的定義求出的值即可.【詳解】由題意得角的終邊經(jīng)過點,則,所以,故答案為.【點睛】本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.12、【解析】
先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【詳解】因為,所以,又因為,所以,此時或,則可得集合:.【點睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.13、【解析】
將三階矩陣化為普通運算,利用指數(shù)函數(shù)的性質(zhì)即可求出不等式的解集.【詳解】不等式化為,整理得,,,即,,即不等式的解集為故答案為:【點睛】此題考查了其他不等式的解法,指數(shù)函數(shù)的性質(zhì),以及三階矩陣,是一道中檔題.14、,【解析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點:等比數(shù)列通項與和項15、128【解析】
觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【點睛】本題考查數(shù)列在數(shù)陣中的應(yīng)用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應(yīng)用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關(guān)系,同時注意每一行開始的數(shù)據(jù)或結(jié)尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.16、5【解析】
利用求得,進而求得的值.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時上式也滿足,故的通項公式為,故.【點睛】本小題主要考查已知求,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求得,在中運用余弦定理可得所求值;(2)在中,求得,,,再由三角形的面積公式,可得所求值.【詳解】(1)由題意可得,在中,由余弦定理可得,則;(2)在中,,,,的面積為.【點睛】本題考查三角形的余弦定理和正弦定理、面積公式的運用,考查方程思想和運算能力.18、(1)見詳解;(2)【解析】
(1)連接交于點,連接,利用線面平行的性質(zhì)定理可得,從而可得為的中點,進而可證出(2)利用面面垂直的性質(zhì)定理可得平面,從而可得三棱柱為直三棱柱,在中,根據(jù)等腰三角形的性質(zhì)可得,進而可得棱柱的高為,利用柱體的體積公式即可求解.【詳解】(1)連接交于點,連接,如圖:由平面,且平面平面,所以,由為的中點,所以為的中點,又,(2)由四邊形是矩形,且平面平面ABC,所以平面,即三棱柱為直三棱柱,在中,,,,所以,因為直線與平面ABC所成角的正切值等于2,在中,,所以..【點睛】本題考查了線面平行的性質(zhì)定理、面面垂直的性質(zhì)定理,同時考查了線面角以及柱體的體積公式,屬于基礎(chǔ)題.19、(1);(2),.【解析】
(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件,求出公差,再由通項公式,得到,即可求出結(jié)果;(2)先由題意求出,得到等比數(shù)列的公比,再由等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,所以,解得:;又,所以,即,解得:;(2)因為數(shù)列的公差,,所以;因此等比數(shù)列的公比為,所以其前項和為.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記通項公式與求和公式即可,屬于??碱}型.20、(1);(2)見解析.【解析】
(1)根據(jù)旋轉(zhuǎn)體的形狀,可利用兩個圓錐的體積和得到所求(2)分別計算兩個圓錐的側(cè)面積求和即可.【詳解】沿斜邊所在直線旋轉(zhuǎn)一周即得到如圖所示的旋轉(zhuǎn)體.∵,,∴,,,∴.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中山客運駕駛員考試題庫
- 數(shù)學(xué)-浙江省湖州、衢州、麗水2024年11月三地市高三教學(xué)質(zhì)量檢測試卷試題和答案
- 吉首大學(xué)《合唱與合唱指揮2》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉首大學(xué)《Web編程技術(shù)》2021-2022學(xué)年期末試卷
- 《機床電氣控制與PLC》期末試卷-B卷及答案
- 吉林藝術(shù)學(xué)院《戲曲鑒賞》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《流行音樂演唱錄音實踐Ⅱ》2021-2022學(xué)年第一學(xué)期期末試卷
- 執(zhí)行四方協(xié)議書范本范本
- 2024年公證遺產(chǎn)繼承分配協(xié)議書模板
- 吉林師范大學(xué)《影視語言》2021-2022學(xué)年第一學(xué)期期末試卷
- 餐飲業(yè)行業(yè)分析報告
- 神話故事燧人鉆木取火
- 中華人民共和國民法典:研究與解讀
- 食品加工與檢驗實訓(xùn)室建設(shè)方案
- 《心導(dǎo)管檢查術(shù)》課件
- 《基因表達調(diào)控》課件
- 常州高級中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(原卷版)
- 廚房安全協(xié)議書
- TikTok全球化運營策略解析
- 《藍色國土》課件
- 消化系統(tǒng)護理中的專業(yè)發(fā)展規(guī)劃
評論
0/150
提交評論