版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.?dāng)S一枚均勻的硬幣,如果連續(xù)拋擲2020次,那么拋擲第2019次時(shí)出現(xiàn)正面向上的概率是()A. B. C. D.2.已知,,則的最大值為()A.9 B.3 C.1 D.273.與角終邊相同的角是A. B. C. D.4.已知點(diǎn)是所在平面內(nèi)的一定點(diǎn),是平面內(nèi)一動(dòng)點(diǎn),若,則點(diǎn)的軌跡一定經(jīng)過的()A.重心 B.垂心 C.內(nèi)心 D.外心5.已知冪函數(shù)過點(diǎn),令,,記數(shù)列的前項(xiàng)和為,則時(shí),的值是()A.10 B.120 C.130 D.1406.在正項(xiàng)等比數(shù)列中,,為方程的兩根,則()A.9 B.27 C.64 D.817.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.8.若,則()A. B. C. D.9.在數(shù)列an中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個(gè)不共線的非零向量OA、OB、OC滿足OC=a1A.1005 B.1006 C.2010 D.201210.在數(shù)列中,已知,,則一定()A.是等差數(shù)列 B.是等比數(shù)列 C.不是等差數(shù)列 D.不是等比數(shù)列二、填空題:本大題共6小題,每小題5分,共30分。11.若是等比數(shù)列,,,則________12.設(shè)O點(diǎn)在內(nèi)部,且有,則的面積與的面積的比為.13.已知數(shù)列滿足:,,則使成立的的最大值為_______14.向量滿足,,則向量的夾角的余弦值為_____.15.如圖,長(zhǎng)方體的體積是120,E為的中點(diǎn),則三棱錐E-BCD的體積是_____.16.P是棱長(zhǎng)為4的正方體的棱的中點(diǎn),沿正方體表面從點(diǎn)A到點(diǎn)P的最短路程是_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:A:所有芒果以10元/千克收購(gòu);B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過計(jì)算確定種植園選擇哪種方案獲利更多?18.已知等差數(shù)列的前項(xiàng)的和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),記數(shù)列的前項(xiàng)和為,求.19.已知函數(shù).(1)判斷函數(shù)奇偶性;(2)討論函數(shù)的單調(diào)性;(3)比較與的大小.20.某工廠共有200名工人,已知這200名工人去年完成的產(chǎn)品數(shù)都在區(qū)間(單位:萬(wàn)件)內(nèi),其中每年完成14萬(wàn)件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成5組,第1組、第2組第3組、第4組、第5組對(duì)應(yīng)的區(qū)間分別為,,,,,并繪制出如圖所示的頻率分布直方圖.(1)選取合適的抽樣方法從這200名工人中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);(2)現(xiàn)從(1)中25人的樣本中的優(yōu)秀員工中隨機(jī)選取2名傳授經(jīng)驗(yàn),求選取的2名工人在同一組的概率.21.如圖,在四棱錐中,底面為菱形,、、分別是棱、、的中點(diǎn),且平面.(1)求證:平面;(2)求證:平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)概率的性質(zhì)直接得到答案.【詳解】根據(jù)概率的性質(zhì)知:每次正面向上的概率為.故選:.【點(diǎn)睛】本題考查了概率的性質(zhì),屬于簡(jiǎn)單題.2、B【解析】
由已知,可利用柯西不等式,構(gòu)造柯西不等式,即可求解.【詳解】由已知,可知,,利用柯西不等式,可構(gòu)造得,即,所以的最大值為3,故選B.【點(diǎn)睛】本題主要考查了柯西不等式的應(yīng)用,其中解答中熟記柯西不等式,合理構(gòu)造柯西不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.3、C【解析】∵與終邊相同的角的集合為∴令,得∴與角終邊相同的角是故選C4、A【解析】
設(shè)D是BC的中點(diǎn),由,,知,所以點(diǎn)P的軌跡是射線AD,故點(diǎn)P的軌跡一定經(jīng)過△ABC的重心.【詳解】如圖,設(shè)D是BC的中點(diǎn),∵,,∴,即∴點(diǎn)P的軌跡是射線AD,∵AD是△ABC中BC邊上的中線,∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心.故選:A.【點(diǎn)睛】本題考查三角形五心的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.5、B【解析】
根據(jù)冪函數(shù)所過點(diǎn)求得冪函數(shù)解析式,由此求得的表達(dá)式,利用裂項(xiàng)求和法求得的表達(dá)式,解方程求得的值.【詳解】設(shè)冪函數(shù)為,將代入得,所以.所以,所以,故,由解得,故選B.【點(diǎn)睛】本小題主要考查冪函數(shù)解析式的求法,考查裂項(xiàng)求和法,考查方程的思想,屬于基礎(chǔ)題.6、B【解析】
由韋達(dá)定理得,再利用等比數(shù)列的性質(zhì)求得結(jié)果.【詳解】由已知得是正項(xiàng)等比數(shù)列本題正確選項(xiàng):【點(diǎn)睛】本題考查等比數(shù)列的三項(xiàng)之積的求法,關(guān)鍵是對(duì)等比數(shù)列的性質(zhì)進(jìn)行合理運(yùn)用,屬于基礎(chǔ)題.7、C【解析】關(guān)于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.8、C【解析】
由及即可得解.【詳解】由,可得.故選C.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系及二倍角公式,屬于基礎(chǔ)題.9、A【解析】
利用等差數(shù)列的定義可知數(shù)列an為等差數(shù)列,由向量中三點(diǎn)共線的結(jié)論得出a1+【詳解】∵an+1=an∵三點(diǎn)A、B、C共線且該直線不過O點(diǎn),OC=a1因此,S2010故選:A.【點(diǎn)睛】本題考查等差數(shù)列求和,涉及等差數(shù)列的定義以及向量中三點(diǎn)共線結(jié)論的應(yīng)用,考查計(jì)算能力,屬于中等題.10、C【解析】
依據(jù)等差、等比數(shù)列的定義或性質(zhì)進(jìn)行判斷?!驹斀狻恳?yàn)?,,,所以一定不是等差?shù)列,故選C?!军c(diǎn)睛】本題主要考查等差、等比數(shù)列定義以及性質(zhì)的應(yīng)用。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)等比數(shù)列的通項(xiàng)公式求解公比再求和即可.【詳解】設(shè)公比為,則.故故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎(chǔ)題型.12、3【解析】
分別取AC、BC的中點(diǎn)D、E,
,
,即,
是DE的一個(gè)三等分點(diǎn),
,
故答案為:3.13、4【解析】
從得到關(guān)于的通項(xiàng)公式后可得的通項(xiàng)公式,解不等式后可得使成立的的最大值.【詳解】易知為等差數(shù)列,首項(xiàng)為,公差為1,∴,∴,令,∴,∴.故答案為:4【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)的求法及數(shù)列不等式的解,屬于容易題.14、【解析】
通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的余弦函數(shù)值的求法.考查計(jì)算能力.屬于基礎(chǔ)題.15、10.【解析】
由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.【詳解】因?yàn)殚L(zhǎng)方體的體積為120,所以,因?yàn)闉榈闹悬c(diǎn),所以,由長(zhǎng)方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【點(diǎn)睛】本題蘊(yùn)含“整體和局部”的對(duì)立統(tǒng)一規(guī)律.在幾何體面積或體積的計(jì)算問題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補(bǔ)”的方法解題.16、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對(duì)稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對(duì)稱,求得結(jié)果一樣,故解題時(shí)選擇以BC為軸展開與BB1為軸展開兩種方式驗(yàn)證即可【詳解】由題意,若以BC為軸展開,則AP兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為4,6,故兩點(diǎn)之間的距離是若以BB1為軸展開,則AP兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為2,8,故兩點(diǎn)之間的距離是故沿正方體表面從點(diǎn)A到點(diǎn)P的最短路程是cm故答案為【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點(diǎn)距離問題轉(zhuǎn)移到平面中來(lái)求三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】
(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計(jì)算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數(shù)在內(nèi),設(shè)中位數(shù)為,則有,解得.故中位數(shù)為268.75.(2)設(shè)質(zhì)量在內(nèi)的4個(gè)芒果分別為,,,,質(zhì)量在內(nèi)的2個(gè)芒果分別為,.從這6個(gè)芒果中選出3個(gè)的情況共有,,,,,,,,,,,,,,,,,,,,共計(jì)20種,其中恰有一個(gè)在內(nèi)的情況有,,,,,,,,,,,,共計(jì)12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元;高于或等于250克元.故總計(jì)元,由于,故B方案獲利更多,應(yīng)選B方案.【點(diǎn)睛】本題主要考查了頻率分布直方圖的用法以及古典概型的方法,同時(shí)也考查了根據(jù)樣本估計(jì)總體的方法等.屬于中等題型.18、(1)數(shù)列的通項(xiàng)公式為(2)【解析】試題分析:(1)建立方程組;(2)由(1)得:進(jìn)而由裂項(xiàng)相消法求得.試題解析:(1)設(shè)等差數(shù)列的公差為,由題意知解得.所以數(shù)列的通項(xiàng)公式為(2)∴19、(1)是偶函數(shù)(2)見解析(3)【解析】
(1)由奇偶函數(shù)的定義判斷;(2)由單調(diào)性的定義證明;(3)由于函數(shù)為偶函數(shù),因此只要比較與的大小,因此先確定與的大小,這就得到分類標(biāo)準(zhǔn).【詳解】(1)是偶函數(shù)(2)當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);先證明當(dāng)時(shí),是增函數(shù)證明:任取,且,則,且,,即:當(dāng)時(shí),是增函數(shù)∵是偶函數(shù),∴當(dāng)時(shí),是減函數(shù).(3)要比較與的大小,∵是偶函數(shù),∴只要比較與大小即可.當(dāng)時(shí),即時(shí),∵當(dāng)時(shí),是增函數(shù),∴當(dāng)時(shí),即當(dāng)時(shí),∵當(dāng)時(shí),是增函數(shù),∴【點(diǎn)睛】本題考查函數(shù)的奇偶性與單調(diào)性,掌握奇偶性與單調(diào)性的定義是解題基礎(chǔ).20、(1)第1組:2;第2組:8,;第3組:9;第4組:3;第5組:3(2)【解析】
(1)根據(jù)頻率之和為列方程,解方程求得的值.然后根據(jù)分層抽樣的計(jì)算方法,計(jì)算出每組抽取的人數(shù).(2)利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】(1):,.用分層抽樣比較合適.第1組應(yīng)抽取的人數(shù)為,第2組應(yīng)抽取的人數(shù)為,第3組應(yīng)抽取的人數(shù)為,第4組應(yīng)抽取的人數(shù)為,第5組應(yīng)抽取的人數(shù)為.(2)(1)中25人的樣本中的優(yōu)秀員工中,第4組有3人,記這3人分別為,第5組有3人,記這3人分別為.從這6人中隨機(jī)選取2名,所有的基本事件為:,,,,,,,,,,,,,,,共有15個(gè)基本事件.選取的2名工人在同一組的基本事件有,,,,,共6個(gè),故選取的2名工人在同一組的概率為.【點(diǎn)睛】本小題主要考查補(bǔ)全頻率分布,考查分層抽樣,考查古典概型的計(jì)算,屬于基礎(chǔ)題.21、(1)見解析;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)學(xué)院學(xué)生晚出、晚歸、不歸管理辦法
- 2025年度綠色生態(tài)園承建及景觀裝修合作協(xié)議3篇
- 2024年計(jì)件工作制職工聘用協(xié)議版B版
- 2025年度電商平臺(tái)短信催收合作協(xié)議范本3篇
- 2024年版公司員工通勤巴士租賃協(xié)議版B版
- 2024年贍養(yǎng)老年人義務(wù)合同示例一
- 人教版小學(xué)六年級(jí)數(shù)學(xué)上冊(cè)第二單元《位置與方向(二)》及練習(xí)五課件
- 中國(guó)特色社會(huì)主義理論與實(shí)踐研究(湖大簡(jiǎn)答題)
- 學(xué)校傳染病和突發(fā)公共衛(wèi)生事件處理流程圖
- 2024年檢驗(yàn)類之臨床醫(yī)學(xué)檢驗(yàn)技術(shù)(師)通關(guān)試題庫(kù)(有答案)
- 廣西崇左憑祥海關(guān)緝私分局緝私輔警招聘筆試真題2023
- 食材質(zhì)量控制方案
- CNC技理考(含答案)
- 員工互評(píng)表(含指標(biāo))
- 小收納大世界-整li與收納(黑龍江幼兒師范高等??茖W(xué)校)知到智慧樹答案
- 河南省鄭州市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試題含解析
- BOSS GT-6效果處理器中文說(shuō)明書
- EIM Book 1 Unit 5 Successful people單元檢測(cè)試題
- 切線長(zhǎng)定理、弦切角定理、切割線定理、相交弦定理93336
- 重慶市公路水運(yùn)工程工地試驗(yàn)室管理實(shí)施細(xì)則
- 銷售員心態(tài)突破與自我激勵(lì)
評(píng)論
0/150
提交評(píng)論