




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
SupplyChainManagement:Strategy,Planning,andOperationSeventhEditionChapter7DemandForecastinginaSupplyChainCopyright?2019,2016,2013PearsonEducation,Inc.AllRightsReservedLearningObjectives7.1Understandtheroleofforecastingforbothanenterpriseandasupplychain.7.2Identifythecomponentsofademandforecastandsomebasicapproachestoforecasting.7.3Forecastdemandusingtime-seriesmethodologiesgivenhistoricaldemanddatainasupplychain.7.4Analyzedemandforecaststoestimateforecasterror.7.5UseExceltobuildtime-seriesforecastingmodels.RoleofForecastinginaSupplyChainThebasisforallplanningdecisionsinasupplychainUsedforbothpushandpullprocessesProductionscheduling,inventory,aggregateplanningSalesforceallocation,promotions,newproductionintroductionPlant/equipmentinvestment,budgetaryplanningWorkforceplanning,hiring,layoffsAllofthesedecisionsareinterrelatedCharacteristicsofForecastsForecastsarealwaysinaccurateandshouldthusincludeboththeexpectedvalueoftheforecastandameasureofforecasterrorLong-termforecastsareusuallylessaccuratethanshort-termforecastsAggregateforecastsareusuallymoreaccuratethandisaggregateforecastsIngeneral,thefartherupthesupplychainacompanyis,thegreateristhedistortionofinformationitreceivesSummaryofLearningObjective1(1of2)Forecastingisakeyinputforvirtuallyeverydesignandplanningdecisionmadeinasupplychain.Itisimportanttorecognizethatallforecastsarelikelytobewrong.Thus,anestimationofforecasterrorisessentialtoeffectivelyusetheforecast.Reducingtheforecasthorizon(byreducingtheleadtimeoftheassociateddecision)andaggregationaretwoeffectiveapproachestodecreaseforecasterror.SummaryofLearningObjective1(2of2)Arelativelyrecentphenomenon,however,istocreatecollaborativeforecastsforanentiresupplychainandusetheseasthebasisfordecisions.Collaborativeforecastinggreatlyincreasestheaccuracyofforecastsandallowsthesupplychaintomaximizeitsperformance.Withoutcollaboration,supplychainstagesfartherfromdemandwilllikelyhavepoorforecaststhatwillleadtosupplychaininefficienciesandalackofresponsiveness.ComponentsandMethods(1of2)CompaniesmustidentifythefactorsthatinfluencefuturedemandandthenascertaintherelationshipbetweenthesefactorsandfuturedemandPastdemandLeadtimeofproductreplenishmentPlannedadvertisingormarketingeffortsPlannedpricediscountsStateoftheeconomyActionsthatcompetitorshavetakenComponentsandMethods(2of2)QualitativePrimarilysubjectiveRelyonjudgmentTimeSeriesUsehistoricaldemandonlyBestwithstabledemandCausalRelationshipbetweendemandandsomeotherfactorSimulationImitateconsumerchoicesthatgiverisetodemandComponentsofAnObservationObserveddemand(O)=systematiccomponent(S)
+randomcomponent(R)Systematiccomponent–expectedvalueofdemandLevel(currentdeseasonalizeddemand)Trend(growthordeclineindemand)Seasonality(predictableseasonalfluctuation)Randomcomponent–partofforecastthatdeviatesfromsystematicpartForecasterror–differencebetweenforecastandactualdemandFiveImportantPointsintheForecastingProcessUnderstandtheobjectiveofforecasting.Integratedemandplanningandforecastingthroughoutthesupplychain.Identifythemajorfactorsthatinfluencethedemandforecast.Forecastattheappropriatelevelofaggregation.Establishperformanceanderrormeasuresfortheforecast.SummaryofLearningObjective2Demandconsistsofasystematicandarandomcomponent.Thesystematiccomponentmeasurestheexpectedvalueofdemand.Therandomcomponentmeasuresfluctuationsindemandfromtheexpectedvalue.Thesystematiccomponentconsistsoflevel,trend,andseasonality.Levelmeasuresthecurrentde-seasonalizeddemand.Trendmeasuresthecurrentrateofgrowthordeclineindemand.Seasonalityindicatespredictableseasonalfluctuationsindemand.Thegoalofforecastingistoestimatethesystematiccomponentandthesize(notdirection)oftherandomcomponent(intheformofaforecasterror).Goodforecastingrequiresaclearunderstandingoftheobjectiveoftheforecastandshouldbeintegratedacrossthesupplychain.Time-SeriesForecastingMethodsThreewaystocalculatethesystematiccomponentMultiplicativeS=level×trend×seasonalfactorAdditiveS=level+trend+seasonalfactorMixedS=(level+trend)×seasonalfactorStaticMethodsSystematiccomponent=(level+trend)×seasonalfactorWhereL = estimateoflevelatt=0T = estimateoftrendSt = estimateofseasonalfactorforPeriodtDt = actualdemandobservedinPeriodtFt = forecastofdemandforPeriodtTahoeSalt(1of5)Table7-1QuarterlyDemandforTahoeSaltYearQuarterPeriod,tDemand,Dt121 8,000132 13,000143 23,000214 34,000225 10,000236 18,000247 23,000TahoeSalt(2of5)Table7-1[continued]YearQuarterPeriod,tDemand,Dt318 38,000329 12,0003310 13,0003411 32,0004112 41,000TahoeSalt(3of5)Figure7-1QuarterlyDemandatTahoeSaltDeseasonalizedemandandrunlinearregressiontoestimatelevelandtrend.Estimateseasonalfactors.EstimateLevelandTrend(1of2)Periodicityp=4,t=3EstimateLevelandTrend(2of2)TahoeSalt(4of5)Figure7-2ExcelWorkbookwithDeseasonalizedDemandforTahoeSaltTahoeSalt(5of5)Figure7-3DeseasonalizedDemandforTahoeSaltAlinearrelationshipexistsbetweenthedeseasonalizeddemandandtimebasedonthechangeindemandovertimeEstimatingSeasonalFactors(1of3)Figure7-4DeseasonalizedDemandandSeasonalFactorsforTahoeSaltEstimatingSeasonalFactors(2of3)EstimatingSeasonalFactors(3of3)AdaptiveForecasting(1of2)Theestimatesoflevel,trend,andseasonalityareupdatedaftereachdemandobservationEstimatesincorporateallnewdatathatareobservedAdaptiveForecasting(2of2)WhereLt=estimateoflevelattheendofPeriodt
Tt=estimateoftrendattheendofPeriodt
St=estimateofseasonalfactorforPeriodt
Ft
=forecastofdemandforPeriodt(madePeriodt–1orearlier)Dt=actualdemandobservedinPeriodt
Et=Ft
–Dt=forecasterrorinPeriodtStepsinAdaptiveForecastingInitializeComputeinitialestimatesoflevel(L0),trend(T0),andseasonalfactors(S1,…,Sp)ForecastForecastdemandforperiodt+1EstimateerrorComputeerrorEt+1=Ft+1–Dt+1ModifyestimatesModifytheestimatesoflevel(Lt+1),trend(Tt+1),andseasonalfactor(St+p+1),giventheerrorEt+1MovingAverageUsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand=levelThelevelinperiodtistheaveragedemandoverthelastN
periodsAfterobservingthedemandforperiodt
+1,revisetheestimatesMovingAverageExample(1of2)AsupermarkethasexperiencedweeklydemandofmilkofD1=120,D2=127,D3=114,andD4=122gallonsoverthepastfourweeksForecastdemandforPeriod5usingafour-periodmovingaverageWhatistheforecasterrorifdemandinPeriod5turnsouttobe125gallons?MovingAverageExample(2of2)ForecastdemandforPeriod5 F5=L4=120.75gallonsErrorifdemandinPeriod5=125gallons E5=F5–D5=120.75–125=–4.25ReviseddemandSimpleExponentialSmoothing(1of3)UsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand=levelInitialestimateoflevel,L0,assumedtobetheaverageofallhistoricaldataSimpleExponentialSmoothing(2of3)GivendataforPeriods1tonCurrentforecastRevisedforecastusingsmoothingconstant(0<α<1)ThusSimpleExponentialSmoothing(3of3)SupermarketdataF1
=L0
=120.75E1
=F1?D1
=120.75?120=0.75L1=αD1+(1?α)L0=0.1×120+0.9×120.75=120.68Trend-CorrectedExponentialSmoothing(Holt’sModel)(1of4)AppropriatewhenthedemandisassumedtohavealevelandtrendinthesystematiccomponentofdemandbutnoseasonalitySystematiccomponentofdemand=level+trendTrend-CorrectedExponentialSmoothing(Holt’sModel)(2of4)ObtaininitialestimateoflevelandtrendbyrunningalinearregressionDt
=at+bT0=a,L0=bInPeriodt,theforecastforfutureperiodsisFt+1
=Lt+Tt
andFt+n=Lt+nTtRevisedestimatesforPeriodtTrend-CorrectedExponentialSmoothing(Holt’sModel)(3of4)SmartphoneplayerdemandD1=8,415,D2=8,732,D3=9,014,D4=9,808,D5=10,413,D6=11,961,α=0.1,β=0.2UsingregressionanalysisL0=7,367andT0=673ForecastforPeriod1F1=L0+T0=7,367+673=8,040Period1errorE1=F1–D1=8,040–8,415=–375Trend-CorrectedExponentialSmoothing(Holt’sModel)(4of4)RevisedestimateWithnewL1F2=L1+T1=8,078+681=8,759ContinuingF7=L6+T6=11,399+673=12,072Trend-andSeasonality-CorrectedExponentialSmoothing(1of2)Appropriatewhenthesystematiccomponentofdemandhasalevel,trend,andseasonalfactorSystematiccomponent=(level+trend)×seasonalfactorTrend-andSeasonality-CorrectedExponentialSmoothing(2of2)Afterobservingdemandforperiodt+1,reviseestimatesforlevel,trend,andseasonalfactorsα
=smoothingconstantforlevelβ
=smoothingconstantfortrendγ
=smoothingconstantforseasonalfactorWinter’sModel(1of3)L0=18,439T0=524S1=0.47,S2=0.68,S3=1.17,S4=1.67F1=(L0+T0)S1=(18,439+524)(0.47)=8,913TheobserveddemandforPeriod1=D1=8,000ForecasterrorforPeriod1=E1=F1–D1=8,913–8,000=913Winter’sModel(2of3)Assumeα
=0.1,β
=0.2,γ
=0.1;reviseestimatesforlevelandtrendforperiod1andforseasonalfactorforPeriod5Winter’sModel(3of3)ForecastdemandforPeriod2F2
=(L1+T1)S2=(18,769+485)(0.68)=13,093TimeSeriesModelsForecastingMethodApplicabilityMovingaverageNotrendorseasonalitySimpleexponentialsmoothingNotrendorseasonalityHolt’smodelTrendbutnoseasonalityWinter’smodelTrendandseasonalitySummaryofLearningObjective3Time-seriesmethodsforforecastingarecategorizedasstaticoradaptive.Instaticmethods,theestimatesofparametersarenotupdatedasnewdemandisobserved.Staticmethodsincluderegression.Inadaptivemethods,theestimatesareupdatedeachtimeanewdemandisobserved.Adaptivemethodsincludemovingaverages,simpleexponentialsmoothing,Holt’smodel,andWinter’smodel.Movingaveragesandsimpleexponentialsmoothingarebestusedwhendemanddisplaysneithertrendnorseasonality.Holt’smodelisbestwhendemanddisplaysatrendbutnoseasonality.Winter’smodelisappropriatewhendemanddisplaysbothtrendandseasonality.MeasuresofForecastError(1of2)Forecasterrorscontainvaluableinformationandmustbeanalyzedfortworeasons:ManagersuseerroranalysistodeterminewhetherthecurrentforecastingmethodispredictingthesystematiccomponentofdemandaccuratelyAllcontingencyplansmustaccountforforecasterrorMeasuresofForecastError(2of2)SummaryofLearningObjective4Forecasterrormeasurestherandomcomponentofdemand.Thismeasureisimportantbecauseitrevealshowinaccurateaforecastislikelytobeandwhatcontingenciesafirmmayhavetoplanfor.TheM
S
E,M
A
D,andM
A
P
Eareusedtoestimatethesizeofthefore-casterror.ThebiasandT
Sareusedtoestimateiftheforecastconsistentlyover-orunder-forecastsorifdemandhasdeviatedsignificantlyfromhistoricalnorms.SelectingtheBestSmoothingConstant(1of2)Figure7-5SelectingSmoothingConstantbyMinimizingM
S
ESelectingtheBestSmoothingConstant(2of2)Figure7-6SelectingSmoothingConstantbyMinimizingM
A
DForecastingDemandatTahoeSalt(1of10)MovingaverageSimpleexponentialsmoothingTrend-correctedexponentialsmoothingTrend-andseasonality-correctedexponentialsmoothingForecastingDemandatTahoeSalt(2of10)Figure7-7TahoeSaltForecastsUsingFour-PeriodMovingAverageForecastingDemandatTahoeSalt(3of10)MovingaverageL12=24,500F13=F14=F15=F16=L12=24,500σ
=1.25×9,719=12,148ForecastingDemandatTahoeSalt(4of10)Figure7-8TahoeSaltForecastsUsingSimpleExponentialSmoothingForecastingDemandatTahoeSalt(5of10)Simpleexponentialsmoothingα
=0.1L0=22,083L12=23,490F13=F14=F15=F16=L12=23,490σ=1.25×
10,208=12,761ForecastingDemandatTahoeSalt(6of10)Figure7-9Trend-CorrectedExponentialSmoothingForecastingDemandatTahoeSalt(7of10)Trend-CorrectedExponentialSmoothingL0=12,015andT0=1,549L12=30,443andT12=1,541F13=L12+T12=30,443+1,541=31,984F14=L12+2T12=30,443+2×1,541=33,525F15=L12+3T12=30,443+3×
1,541=35,066F16=L12+4T12=30,443+4×
1,541=36,607σ
=1.25×
8,836=11,045ForecastingDemandatTahoeSalt(8of10)Figure7-10Trend
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025浙江寧波象山交通開發(fā)建設(shè)集團有限公司招聘6人筆試歷年參考題庫附帶答案詳解
- 醫(yī)??荚囶}及答案
- 北京智慧城市介紹
- 化工醫(yī)藥政策解讀課件
- 動物創(chuàng)新美術(shù)課件
- 2024年福建省閩侯縣人民醫(yī)院公開招聘護理工作人員試題帶答案詳解
- 制度宣傳課件
- 2025年中國汽車輪轂行業(yè)發(fā)展全景監(jiān)測及投資方向研究報告
- 2025年中國壓鑄行業(yè)市場深度研究及發(fā)展趨勢預測報告
- 2025年中國雕卷草圈椅行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2024年安徽中醫(yī)藥高等??茖W校招聘考試真題
- 2025年變電站春季安全生產(chǎn)自查報告
- 充電樁充電服務與充電站安全保障合同
- 個人信息保護合規(guī)審計師CCRC-PIPCA含答案
- 2025鄂爾多斯達拉特旗智杰教育投資有限責任公司面向社會招聘10名工作人員筆試參考題庫附帶答案詳解析集合
- 小型引調(diào)水工程可行性研究報告
- GB 9706.283-2022醫(yī)用電氣設(shè)備第2-83部分:家用光治療設(shè)備的基本安全和基本性能專用要求
- 放棄房產(chǎn)貸款協(xié)議書
- DB62T 3136-2023 公路瀝青路面施工技術(shù)規(guī)范
- 2025年兒童心理學基礎(chǔ)知識考試卷及答案
- 2024年內(nèi)蒙古公安廳招聘警務輔助人員真題
評論
0/150
提交評論