Unsupervised-Learning-of-Categories-from-Sets-of-Partially-無(wú)監(jiān)督學(xué)習(xí)的類(lèi)別從套部分課件_第1頁(yè)
Unsupervised-Learning-of-Categories-from-Sets-of-Partially-無(wú)監(jiān)督學(xué)習(xí)的類(lèi)別從套部分課件_第2頁(yè)
Unsupervised-Learning-of-Categories-from-Sets-of-Partially-無(wú)監(jiān)督學(xué)習(xí)的類(lèi)別從套部分課件_第3頁(yè)
Unsupervised-Learning-of-Categories-from-Sets-of-Partially-無(wú)監(jiān)督學(xué)習(xí)的類(lèi)別從套部分課件_第4頁(yè)
Unsupervised-Learning-of-Categories-from-Sets-of-Partially-無(wú)監(jiān)督學(xué)習(xí)的類(lèi)別從套部分課件_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

GoalAutomaticallyrecovercategoriesfromanunlabeledcollectionofimages,andformpredictiveclassifierstolabelnewimages

Tolerateclutter,occlusion,commontransformationsAllowoptional,variableamountofsupervisionEfficiencyMotivationMajorityoftheobjectrecognitionandcategorizationrequires‘ManualAnnotations’.‘ManualAnnotations’:practicallimitonnumberofclassesandnumberoftrainingexamplesperclass.IntroducesBiasing:effectstheperformance.Unsupervisedrecognitionandcategorizationwouldbecosteffectiveandreduceburden.MotivationMajorityoftheobjectrecognitionandcategorizationrequires‘ManualAnnotations’.‘ManualAnnotations’:

practicallimitonnumberofclassesandnumberoftrainingexamplesperclass.IntroducesBiasing:effectstheperformance.Unsupervisedrecognitionandcategorizationwouldbecosteffectiveandreduceburden.RelatedworkModelingsceneswithlocaldescriptorsICCV2019,P.Quelhas,F.Monay,etc.DiscoveringObjectCategoriesinImageCollectionsICCV2019,J.Sivic,B.Russell,A.Efros,etc.LearningObjectCategoriesfromGoogle’sImageSearchICCV2019,R.Fergus,L.Fei-Fei,etc.Relatedwork(contd.)Localfeatures–recognitionandretrievalUnorderedfeaturevectorsandVaryinsizePreviousApproaches:vectorquantizationBuildcodebookoffeaturedescriptorsApplyconventionalclusteringmethodsorlatentsemanticanalysis(LSA)Issues:CluttersOcclusionsAdditionofsmallamountoflabeleddata.ApproachPairwiseaffinitiesreflectingpartial-matchfeaturecorrespondencesarecomputedforallinputimages.(Optional)Avariableamountofsupervisedlabels(pairingconstraints)areoptionallycollectedfromtheuserandaffinitymatrixareadjustedaccordingly.Spectralclusteringisusedtorecovertheinitialdominantclusters.Prototypicalexamples:byevaluatingthetypical“featuremasks”contributingtoeachwithin-clusterpartialmatchingTop-rankedprototypicalexamplesfromrefinedgroupingscomposethelearnedcategories,whichareusedtotrainasetofpredictiveclassifiersforlabellingunseenexamples.PyramidmatchkernelNumberofnewlymatchedpairsatleveliMeasureofdifficultyofamatchatleveliApproximatepartialmatchsimilaritySetsoffeaturesFeatureextraction,Histogrampyramid:levelihasbinsofsize2i

PyramidmatchkernelWeightsinverselyproportionaltobinsizeNormalizekernelvaluestoavoidfavoringlargesetsmeasureofdifficultyofamatchatlevelihistogrampyramidsnumberofnewlymatchedpairsatleveliPyramidmatchkernelAlgorithmInitialGroupingFeatureSetswithpartialcorrespondences.InferringCategoryFeatureMasks.IdentifyingPrototypes.InitialGroupingDataSetU={I1,I2,…,IN}whereIiareimages.IiisdenotedbyfeaturesetXi={f1,…,fmi}wheremimayvaryacrossUfi:descriptionvectors.AuthorsusesSHIFTforlocalfeature.InitialGrouping(contd.)DerivedPartialCorrespondenceusingPyramidMatchKernel.InitialGrouping(contd.)Normalizedcutscriteriontocreatepreliminarilyclasses.OptionallyIntroduceofweaksemisupervisionintheformofpairwiseconstraintsbetweentheunlabeledimagesAdjusttheweightofaffinitymatrixtohighestvaluefor“mustgroup”andzeroto“cannot–group”.InitialGrouping(contd.)BackgroundfeaturematchesMultipleobjectmatchesInferringCategoryFeatureMasksConfoundingnormalizedcuts.Goal:Identifyprototypicalexample.Intuition:Inlierusessimilarpartialportionoffeaturesetstoformpartialmatches.UseModifiedpyramidKernel.IdentifyingPrototypesUsethefeaturemasktoreweighttheindividualfeature.Sorttheimagesbasedonhowconsistenttheymatchwiththeremainderofsets.Exampleswithintopthresholdpercentileare“prototypecandidates”O(jiān)ptionallyallowuserconstraintsandadjustaffinitymatrixincaseofdisagreementInferringfeaturemasksfeatureindexcontributiontomatchInferringfeaturemasksweightedfeaturemaskRefiningintra-clustermatchesweightedfeaturemaskRefiningintra-clustermatchesweightedfeaturemaskRefiningintra-clustermatchesweightedfeaturemaskRefiningintra-clustermatchesweightedfeaturemaskRefiningintra-clustermatchesweightedfeaturemaskSelectingcategoryprototypesSelectingcategoryprototypesUnsupervisedrecoveryofcategoryprototypesToppercentileofprototypesPrototypeaccuracy/categoryCaltech-4datasetSemi-supervisedcategorylabelingCaltech-4datasetRecognitionrate/classAmountofsupervisoryinformation(numberof“must-group”pairs)FutureWorkNumberofgroupingsareneededtospecifiedduringnormalizedcuts.(limitations)Findingofmostcriticallocalfeaturesandinterestpoints.(performance)Usingthealgorithmforimageretrival.References

ShapeMatchingandObjectRecognitionUsingShapeContextsS.Belongie,J.Malik,andJ.Puzicha,IEEETranc.PAMI2019ShapeMatchingandObjectRecognitionusingLowDistortionCorrespondencesA.Berg,T.Berg,andJ.Malik,IEEECVPR2019DistinctiveImageFeaturesfromScaleInvariantKeypointsDLowe,InternationalJournalofComputerVision2019IndexingBasedonScaleInvariantInterestPoints K.MikolajczykandC.Sch

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論