PitchBook-新興空間簡報:數(shù)字孿生(英)-2023_第1頁
PitchBook-新興空間簡報:數(shù)字孿生(英)-2023_第2頁
PitchBook-新興空間簡報:數(shù)字孿生(英)-2023_第3頁
PitchBook-新興空間簡報:數(shù)字孿生(英)-2023_第4頁
PitchBook-新興空間簡報:數(shù)字孿生(英)-2023_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

EMERGING

SPACE

BRIEFDigital

TwinsAli

JavaheriAssociate

Analyst,Emerging

Technologyali.javaheri@Brendan

BurkeOriginally

published

June

8,

2023Senior

Analyst,

EmergingTechnologybrendan.burke@Trending

companiesOverviewDigitaltwins

arevirtual

replicasofphysicalassets,

constructedviasensor

data,connectivity,and

analytics.

Theyareused

acrosssectors

suchas

manufacturing,automotive,healthcare,and

energy

toprovidereal-timemonitoring,modeling,and

optimization.Forinstance,

digitaltwins

can

simulateproduction

linesinfactories,

vehicleperformance

under

different

conditions,healthrisks

inpatients,orenvironmentaleffects

on

powergenerators.

Theyfacilitateadvancedapplicationssuchas

predictivemaintenance,performance

simulations,and

efficiencyoptimization.Bridgingthevirtual

and

physicalworlds,digitaltwins

allowcontinuousdataexchangeand

visualization,offeringinvaluableinsightsfordecisionmakingandstrategicplanning.DigitaltwinsVC

dealactivityBackground158134125Aconceptsimilartodigitaltwins

hasrootsinthe1960s

when

NASA

pioneered

theuse

ofdigitaltechnology

duringtheApollo13moon

mission.Simulatorsweresetupon

therealspaceshippriortodeparture,

allowingengineers

torun

situationalsimulationswhilethespacecraft

wasinspace.

These

simulators,whichwere9772morephysicalthandigital,

provedcrucialwhen

themissionencounteredcritical150malfunctions,

as

engineers

couldassess

and

recreatetheconditionson

boardthemalfunctioningshuttle.

By

guidingthecrewwiththehelpofcomputer-controlledmodels,

theysuccessfullyavertedapotentialdisasterand

safelybroughtthecrew$.522$.33home.

The

currentiterationof“digitaltwins”wassolidifiedinthe2000s

when$2.6$6.32021$1.4$12.6MichaelGrievespresentedthedevelopmentofaproduct

lifecyclemanagementcenterattheUniversityofMichiganin2002.Thiscenterencompassed

alltheessentialelements

associatedwithadigitaltwin,

includingaphysicalspace,

avirtual

space,

and

theexchangeofinformationbetween

thetwo.2018201920202022

2023*Deal

countDeal

value($B)Source:

PitchBook

?

Geography:

Global*AsofMay

31,

20231:

“Physical

Twins,Digital

Twins,and

the

Apollo

Myth,”

Linkedin,

Michael

Grieves,

September

8,

2022.2:

“What

Is

aDigital

Twin?”NVIDIA,

Scott

Martin,

December

14,

2021.1Tech

giantdigitaltwinstimeline*?NASA

includesdigitaltwincapabilitiesaspart

ofits

2010TechnologyRoadmapreport.November2010?General

Electricannouncesits

cloud-based

platformPredixforcreatingand

deployingdigitaltwins.?August2015?MicrosoftlaunchesAzureDigitalTwinsservice.December2020?The

EuropeanUnionlaunchesDestinationEarth,

aninitiativetocreateadigitaltwinoftheplanetforclimatemodeling.January2021?AWSlaunchesIoT

TwinMakerservice.April2022?MicrosoftAzurepartners

withElementAnalyticsforAzureDigitalTwins.June2022?AWSpartners

withconstructionsoftwarevendorProcoreforIoT

TwinMaker.?Microsoftpartners

withrenewableenergy

developerSSERenewablesforAzureDigitalTwins.July2022?NVIDIAlaunchesOmniverseCloudServices

forbuildingsand

industrialapplications.?NVIDIAinvests$15.0

millioninsmart

buildingspartner

PassiveLogictouseOmniverseCloudServices.September2022Source:

PitchBook

?

Geography:

Global*AsofMay

31,

20233:

“GE

Announces

Predix

Cloud

-The

World’sFirst

Cloud

Service

Built

for

Industrial

Data

and

Analytics,”

GE,

August

5,

2015.2Technologies

andprocessesDigitaltwins

depend

on

auniqueconvergenceofseveralcutting-edgetechnologies,leveragingadvancements

inBigData,artificialintelligence,multimodalinteractions(MMI),secureconnectivity,and

high-performance

computing.Thisconvergenceiswhatenables

theimplementationand

effective

operationofdigitaltwins.4BigData:

Atthecoreofdigitaltwins

istheaccumulationofhugeamounts

ofdata,primarilyfromtheInternetofThings

(IoT)

and

socialnetworks.

IoT

collects

datathroughphysicalsensors

such

as

pressuregauges,

lightsensors,

and

cameras.Meanwhile,“soft

sensors”

leveragesoftware

and

socialmediatogatheradditionalinformationabout

thephysicaltwin’shealthand

status.

Thisconstantand

varieddataflowprovidestherawdata,whichiseventuallyturned

intostructured

data,tocreateadigitalreplicaofthephysicalentity.Artificialintelligence:The

massive,unstructured

natureofthecollecteddatarequiresadvancedAItoanalyzeand

extract

meaningful

insights.

Technologiessuchas

machinelearning,

deep

learning,

ontologies,and

fuzzy

logicenablethisanalysisand

allowdigitaltwins

tounderstand

thedata.Multimodal

interactions:

After

analyzingthedataand

gleaninginsights,digitaltwins

employMMI

tocommunicatewithand

reflect

theirphysicalcounterparts.MMI

can

manifestas

physicalreplicas—usingsoft

robotics,haptics,AR/VR—virtualavatars,or

audio/visualinterfaces.

These

MMIs

areemployedtogarner

insightsabout

aphysicalasset’sfunctioningand

aresometimesused

tomakealterationstothephysicalassetviathedigitalinterface.

These

interfaces

provideanintuitivelink,enablingreal-timeresponse

and

interaction,fosteringseamless

synchronizationbetween

thephysicaland

digitalworlds.Secure

connectivity:

Connecting

massivedata,

AI,

and

MMI

necessitatesrobust

andsecurenetworks,

rangingfromsimpleroptionslikeBluetoothtomorecomplexwideareanetworks.

Sensitive,real-timedataespeciallydemands

high-speednetworks.Technologiessuchas

blockchainand

biometricshelpsafeguardprivacy,identity,and

dataintegrity.High-performance

computing:

Digital

twins

harness

the

processing

powerofadvanced

systems

such

as

supercomputers,

specialized

hardware,

and

distributedcomputing

tomanage

their

substantial

data

volume

and

computational

requirements.Together,these

technologiesallowdigitaltwins

tocontinuouslymonitor,understand,

and

enhancetheirphysicalcounterparts.

Thiscreatesaconstantfeedback

loop

foroptimizingsystemperformance

and

quality—alsoknownas

thedigitalthread.The

synergisticintegrationofthese

technologieselevatesdigitaltwins

beyondstandarddataanalytics.4:

“The

Potential

ofDigital

Twins,”IEEE

Xplore,

Abdulmotaleb

ElSaddik,

Fedwa

Laamarti

and

Mohammad

Alja’Afreh,May

19,2021.3Types

ofdigitaltwinsTypeDescriptionExample

startups/companiesExit

probabilityM&A:79%probabilityDigital

replicas

of

individual

componentsor

sub-systems

within

a

larger

system,such

as

an

aircraft

turbine.M&AIPONo

exitComponent

twinsAsset

twinsM&A:86%probabilityM&AIPONo

exitDigital

replicas

of

physical

assets,

such

asmachines,

vehicles,

or

buildings.M&A:93%probabilityM&AIPONo

exitDigital

replicas

of

entire

systems,

such

asmanufacturing

plants

or

power

grids.System

twinsProcess

twinsM&A:94%probabilityM&AIPONo

exitDigital

replicas

of

processes,

such

asproduction

lines

or

supply

chains.Source:

PitchBook

?

Geography:

Global*AsofMay

31,

2023ApplicationsThe

utilityofdigitaltwins

technology

benefits

amultitudeofindustrialand

data-drivensectors.

Examples

ofthese

sectors

include:Manufacturing:

Digitaltwins

can

be

used

tocreatevirtual

representationsofmanufacturingprocesses

and

assembly

lines.

These

simulationscan

helpidentifypotentialinefficiencies

or

bottlenecks

and

allowforchangestobe

made

beforetheyimpact

thephysicalmanufacturing

process.Healthcare:

Digitaltwins

ofhumanorgans

couldbe

createdforpersonalizedmedicine.

Theycan

helptosimulatedifferent

treatmentoptionsforaspecificpatient,enablingdoctors

tooptimizetreatmentplans.

Digitaltwins

alsohavethepotentialtoimprovedrug

developmentprocesses.Smart

cities:Citiescan

use

digitaltwins

tooptimizeinfrastructure,utilities,andservices.

Forexample,digitaltwins

couldbe

used

tosimulateand

managetrafficflows,optimizewastemanagement,

or

planforurbangrowthand

development.Automotiveand

aerospace:

Digitaltwins

can

be

used

todesign,test,and

optimizevehicles,aircraft,

and

theirsubsystemsunder

different

conditions.Theycan

alsoaidinpredictivemaintenance,determiningwhen

parts

mightfailand

need

replacementbeforeissues

arise.4Energy:

Intherenewableenergy

sector,digitaltwins

ofwindturbinesor

solarpanels

can

optimizetheirperformance

and

maintenance.Intraditionalenergysectors,

digitaltwins

can

be

used

tosimulateand

optimizeoiland

gas

extractionand

production.Supply

chain:

Digitaltwins

can

optimizelogisticsand

supplychainmanagement,allowingcompaniestomodel

and

predict

outcomesbased

on

variousfactors

suchas

demand,

supply,and

disruptions.Infrastructure:

Digitaltwins

can

assistintheplanning,building,and

maintenanceofinfrastructureprojects

suchas

bridges,

tunnels,and

buildings.Theycan

helptooptimizedesigns,

predict

potentialstructural

issues,

and

aidindisasterresponse.Retail:Retailbusinesses

can

use

digitaltwins

tooptimizetheirstorelayouts,supplychain,and

inventorymanagement.

Theycan

alsouse

themtoanalyzeconsumer

behavior.Agriculture:

Digitaltwins

can

simulatevariousscenariossuchas

weatherconditions,soilproperties,

and

cropbehaviortoimproveyieldand

manageresourceseffectively.LimitationsWhiledigitaltwins

presentvastpotential,theyalsohavelimitationsthatimpacttheirmarketadoption.Establishingadigitaltwinrequiressubstantialresources,whichcoulddetersmallerfirms.

Furthermore,

adoptionisslow,sales

cyclesstretchfromsixto12months,

and

only28%ofmanufacturers

havedevelopedadvanceddigitaltwins.

Concernsarounddataquality,privacy,security,and

alackof5standardizationand

regulatoryclarityadd

tothese

challenges.Recent

dealactivityandmarketoutlookWhilespendingon

digitaltwinsoftware

isrelativelylowcomparedtogeneralanalytics,

themarketisprojectedtogrowsubstantially.In2022—asreferencedinour

H22022IoT

Report—weestimatethemarket

reached

$6.5

billionand

willgrowata33.8%

CAGRto$15.6

billionby2025.Thisprojectionincludesonlythetechnology,excludingservices.Drivingthisgrowtharetechgiantswho

aremakingconsiderableinvestmentsindigitaltwincreationtoboost

industrialuse

oftheircloudservices.

Forinstance,NVIDIA’sGTCconferenceinSeptember

2022highlightednewdigitaltwincapabilitiesas

part

oftheOmniverseplatform.

The

conferencealsoannounced

earlyadopters,includingmanufacturinggiantsLockheed

Martin

and

JaguarLand

Rover.NVIDIA’s$15.0

millioninvestmentinsmart

buildingsstartup

PassiveLogicinQ32022isanotherdemonstrationofits

commitmenttothefield.

AWS

and

MicrosoftAzure’slaunchesofdigitaltwinservices

in2022and

2021,respectively,showthatdigitaltwins

areincreasinglybecomingafocusareafortechcompanies.5:

“IoTSignals

Manufacturing

Spotlight,”

Microsoft,

Intel,

August

2022.5Smart

buildingshaveemerged

as

aleadinguse

case

fordigitaltwinsoftware,

withseveralnotablefundingsinthebuilding-monitoringmarket.Forinstance,

Europe-based

startups

Disperse

and

Modulous

raisedroundsof$16.0

millionand

$12.0million,respectively,duringH22022—bothfocusingon

constructionanalytics

anddigitaltwins

ofconstructionsites.Inthesame

period,

Cupix,anothercompanyspecializinginsimilarservices,

secured$13.7millioninaSeries

Cround.Movinginto2023,

VEERUM,

acompanyconcentratedon

digitizedinfrastructuremanagement,raised$9.3millioninalate-stageVC

roundinMarch.Companiesoperatingacrossthespectrum

ofuse

cases

arealsoraisingnotablerounds.

Unlearn,

whichspecializesindigitaltwins

forclinicaltrials,secureda$15.0millionSeries

BinMarch2023.

Spanish-startup

Plexigridgarnered

$4.9millioninseed

fundingforits

electric

gridanalytics

and

managementplatform.Quantitative

perspective389companies959deals1,180investors$29.4Bcapitalinvested$2.0Mmediandealsize(TTM)$20.3Mmedianpost-moneyvaluation(TTM)4.8%YoY$13.6Bcapitalinvested(TTM)145deals(TTM)0.7%YoY18.0%YoY1,000.4%

YoY*AsofMay

31,

2023Recommende

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論