版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆云南省建水縣高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),,其中,若,,使得成立,則()A. B.C. D.2.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.3.函數(shù)的定義域為()A B.C. D.4.設(shè)全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},則A∩(?UB)=()A. B.C. D.5.函數(shù)的圖象是()A. B.C. D.6.下列函數(shù)中,在區(qū)間上為增函數(shù)的是()A. B.C. D.7.某市政府為了增加農(nóng)民收入,決定對該市特色農(nóng)副產(chǎn)品的科研創(chuàng)新和廣開銷售渠道加大投入,計劃逐年加大研發(fā)和宣傳資金投入.若該政府2020年全年投人資金120萬元,在此基礎(chǔ)上,每年投入的資金比上一年增長12%,則該政府全年投入的資金翻一番(2020年的兩倍)的年份是(參考數(shù)據(jù):lg1.12≈0.05,lg2≈0.30)()A.2027年 B.2026年C.2025年 D.2024屆8.已知函數(shù),且f(5a﹣2)>﹣f(a﹣2),則a的取值范圍是()A.(0,+∞) B.(﹣∞,0)C. D.9.給定函數(shù)①;②;③;④,其中在區(qū)間上單調(diào)遞減的函數(shù)的序號是()A.①② B.②③C.③④ D.①④10.在下列圖象中,函數(shù)的圖象可能是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)(且)的圖象過定點___________.12.寫出一個最小正周期為2的奇函數(shù)________13.若函數(shù)在區(qū)間[2,3]上的最大值比最小值大,則__________.14.冪函數(shù)的圖像經(jīng)過點,則的值為____15.已知函數(shù),若,則________.16.已知函數(shù)滿足,若函數(shù)與圖像的交點為,,,,,則__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,求下列各式的值:(1)(2)18.函數(shù)y=cosx+sinx的最小正周期、最大值、最小值.19.已知的圖像關(guān)于坐標(biāo)原點對稱.(1)求的值,并求出函數(shù)的零點;(2)若存在,使不等式成立,求實數(shù)取值范圍.20.已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)若,求函數(shù)的取值范圍21.已知函數(shù)(1)求不等式的解集;(2)將圖像上所有點的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),再將所得圖像向右平移個單位長度,得到函數(shù)的圖像.求在區(qū)間上的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】首先已知等式變形為,構(gòu)造兩個函數(shù),,問題可轉(zhuǎn)化為這兩個函數(shù)的值域之間的包含關(guān)系【題目詳解】∵,,∴,又,∴,∴由得,,設(shè),,則,,,∴的值域是值域的子集∵,時,,顯然,(否則0屬于的值域,但)∴,∴(*)由上討論知同號,時,(*)式可化為,∴,,當(dāng)時,(*)式可化為,∴,無解綜上:故選:B【題目點撥】本題考查函數(shù)恒成立問題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想.首先是分離兩個變量,然后構(gòu)造新函數(shù),問題轉(zhuǎn)化為兩個函數(shù)值域之間的包含關(guān)系.其次通過已知關(guān)系確定函數(shù)值域的形式(或者參數(shù)的一個范圍),在這個范圍解不等式才能非常簡單地求解2、A【解題分析】由題意知原命題為假命題,故命題的否定為真命題,再利用,即可得到答案.【題目詳解】由題意可得“”是真命題,故或.故選:A.3、D【解題分析】由函數(shù)解析式可得關(guān)于自變量的不等式組,其解集為函數(shù)的定義域.【題目詳解】由題設(shè)可得:,故,故選:D.4、D【解題分析】先求?UB,然后求A∩(?UB)【題目詳解】∵(?UB)={x|x<3或x≥5},∴A∩(?UB)={x|0<x<3}故選D【題目點撥】本題主要考查集合的基本運算,比較基礎(chǔ)5、C【解題分析】由已知可得,從而可得函數(shù)圖象【題目詳解】對于y=x+,當(dāng)x>0時,y=x+1;當(dāng)x<0時,y=x-1.即,故其圖象應(yīng)為C.故選:C6、B【解題分析】利用基本初等函數(shù)的單調(diào)性可得出合適的選項.【題目詳解】函數(shù)、在區(qū)間上為減函數(shù),函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上不單調(diào).故選:B.7、B【解題分析】根據(jù)題意列出指數(shù)方程,取對數(shù),根據(jù)對數(shù)的運算性質(zhì),結(jié)合題中所給的數(shù)據(jù)進(jìn)行求解即可.【題目詳解】設(shè)第n(n∈N*)年該政府全年投入的資金翻一番,依題意得:120(1+12%)n-1=240,則lg[120(1+12%)n-1]=lg240,∴l(xiāng)g120+(n-1)lg1.12=lg240,∴(n-1)lg1.12=lg2,∴,即該政府全年投入的資金翻一番的年份是2026年,故選:B.8、D【解題分析】由定義可求函數(shù)的奇偶性,進(jìn)而將所求不等式轉(zhuǎn)化為f(5a﹣2)>f(﹣a+2),結(jié)合函數(shù)的單調(diào)性可得關(guān)于a的不等式,從而可求出a的取值范圍.【題目詳解】解:根據(jù)題意,函數(shù),其定義域為R,又由f(﹣x)f(x),f(x)為奇函數(shù),又,函數(shù)y=9x+1為增函數(shù),則f(x)在R上單調(diào)遞增;f(5a﹣2)>﹣f(a﹣2)?f(5a﹣2)>f(﹣a+2)?5a﹣2>﹣a+2,解可得,故選:D.【題目點撥】關(guān)鍵點睛:本題的關(guān)鍵是由奇偶性轉(zhuǎn)化已知不等式,再求出函數(shù)單調(diào)性求出關(guān)于a的不等式.9、B【解題分析】根據(jù)指對冪函數(shù)性質(zhì)依次判斷即可得答案.【題目詳解】解:對于①,在上單調(diào)遞增;對于②,在上單調(diào)遞減;對于③,時,在上單調(diào)遞減;對于④,在上單調(diào)遞增;故在區(qū)間上單調(diào)遞減的函數(shù)的序號是②③故選:B10、C【解題分析】根據(jù)函數(shù)的概念,可作直線從左向右在定義域內(nèi)移動,得到直線與曲線的交點個數(shù),即可判定.【題目詳解】由函數(shù)的概念可知,任意一個自變量的值對應(yīng)的因變量的值是唯一的,可作直線從左向右在定義域內(nèi)移動,得到直線與曲線的交點個數(shù)是0或1,顯然A、B、D均不滿足函數(shù)的概念,只有選項C滿足.故選:C.【題目點撥】本題主要考查了函數(shù)概念,以及函數(shù)的圖象及函數(shù)的表示,其中解答中正確理解函數(shù)的基本概念是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由可得圖像所過的定點.【題目詳解】當(dāng)時,,故的圖像過定點.填.【題目點撥】所謂含參數(shù)的函數(shù)的圖像過定點,是指若是與參數(shù)無關(guān)的常數(shù),則函數(shù)的圖像必過.我們也可以根據(jù)圖像的平移把復(fù)雜函數(shù)的圖像所過的定點歸結(jié)為常見函數(shù)的圖像所過的定點(兩個定點之間有平移關(guān)系).12、【解題分析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【題目詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.13、【解題分析】函數(shù)在上單調(diào)遞增,∴解得:故答案為14、2【解題分析】因為冪函數(shù),因此可知f()=215、【解題分析】根據(jù)題意,將分段函數(shù)分類討論計算可得答案【題目詳解】解:當(dāng)時,,即,解得,滿足題意;當(dāng)時,,即,解得,不滿足題意故.故答案為.【題目點撥】本題考查分段函數(shù)的計算,屬于基礎(chǔ)題16、4【解題分析】函數(shù)f(x)(x∈R)滿足,∴f(x)的圖象關(guān)于點(1,0)對稱,而函數(shù)的圖象也關(guān)于點(1,0)對稱,∴函數(shù)與圖像的交點也關(guān)于點(1,0)對稱,∴,∴故答案為:4點睛:本題考查函數(shù)零點問題.函數(shù)零點問題有兩種解決方法,一個是利用二分法求解,另一個是化原函數(shù)為兩個函數(shù),利用兩個函數(shù)的交點來求解.本題要充分注意到兩個函數(shù)的共性:關(guān)于同一點中心對稱.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解題分析】(1)利用二倍角公式和誘導(dǎo)公式直接求解;(2)判斷出,根據(jù),求出的值.【小問1詳解】因為,所以.【小問2詳解】.因為,所以,所以,所以,所以,所以18、,2,.【解題分析】先對函數(shù)進(jìn)行化簡,然后結(jié)合性質(zhì)可求.【題目詳解】;最小正周期為;當(dāng),即時,取到最大值;當(dāng),即時,取到最小值;【題目點撥】本題主要考查三角函數(shù)的性質(zhì),一般是把目標(biāo)式化簡為標(biāo)準(zhǔn)型,然后結(jié)合性質(zhì)求解,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).19、(1),(2)【解題分析】(1)由題設(shè)知是上的奇函數(shù).所以,得(檢驗符合),又方程可以化簡為,從而.(2)不等式有解等價于在上有解,所以考慮在上的最小值,利用換元法可求該最小值為,故.(1)由題意知是上的奇函數(shù).所以,得.,,由,可得,所以,,即的零點為.(2),由題設(shè)知在內(nèi)能成立,即不等式在上能成立.即在內(nèi)能成立,令,則在上能成立,只需,令,對稱軸,則在上單調(diào)遞增.∴,所以..點睛:如果上的奇函數(shù)中含有一個參數(shù),那么我們可以利用來求參數(shù)的大小.又不等式的有解問題可以轉(zhuǎn)化為函數(shù)的最值問題來處理.20、(1),;(2);【解題分析】(1)利用降冪公式與輔助角公式將化簡,在利用正弦函數(shù)的單調(diào)性質(zhì)即可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由的取值范圍,求出的范圍,利用正弦函數(shù)的單調(diào)性即可求得函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題組成員培訓(xùn)
- 專科護士培訓(xùn)收獲
- 3.1 水循環(huán)(分層練習(xí))高一地理同步高效課堂(人教版2019必修第一冊)
- T-YNZYC 0083-2023 綠色藥材 云黃連種苗生產(chǎn)技術(shù)規(guī)程
- T-YNAEPI 0001-2024 有機固廢低溫絕氧碳化處理工程技術(shù)規(guī)范
- 期中模擬試卷(1-4單元)(試題)2024-2025學(xué)年六年級上冊數(shù)學(xué)人教版
- 穿越刺繡的時尚語言-抽紗刺繡與現(xiàn)代時裝設(shè)計探索
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)9.2 任務(wù)1 安裝VPN服務(wù)器
- 幼兒教育繪本分享-幼兒教育專家
- 山東省滕州市2024-2025學(xué)年上學(xué)期中練習(xí)九年級英語試題(無答案)
- 畢業(yè)設(shè)計(論文)叉車液壓系統(tǒng)設(shè)計
- 研發(fā)項目立項管理流程總體思路.doc
- 室內(nèi)裝飾裝修工程施工組織設(shè)計方案(完整版)
- 榆林市第十二中學(xué)第二個五年發(fā)展規(guī)劃
- 日本城市生活垃圾處理現(xiàn)狀及發(fā)展趨勢
- 廣西珍貴樹種發(fā)展規(guī)劃(2011~2020年)講解
- 盤縣紅果鎮(zhèn)上紙廠煤礦(技改)45萬ta項目環(huán)境影響評價報告書
- 李居明大師趣談十二生肖
- 維修電工高級實操考核內(nèi)容
- 產(chǎn)品的環(huán)境適應(yīng)性設(shè)計
- 牽一只蝸牛去散步(精彩).ppt71667
評論
0/150
提交評論