高性能非結(jié)構(gòu)化四面體網(wǎng)格解耦并行生成算法_第1頁
高性能非結(jié)構(gòu)化四面體網(wǎng)格解耦并行生成算法_第2頁
高性能非結(jié)構(gòu)化四面體網(wǎng)格解耦并行生成算法_第3頁
高性能非結(jié)構(gòu)化四面體網(wǎng)格解耦并行生成算法_第4頁
高性能非結(jié)構(gòu)化四面體網(wǎng)格解耦并行生成算法_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高性能非結(jié)構(gòu)化四面體網(wǎng)格解耦并行生成算法Abstract

Thispaperintroducesahigh-performanceparallelalgorithmforgeneratingunstructuredtetrahedralmeshes.Theproposedmethodutilizesadecouplingapproach,wheretheprimalgridgenerationprocessisindependentfromthegeometricrepresentationofthedomain.Byseparatingthedomainrepresentationfromthegridgenerationprocess,thealgorithmallowsforbetterscalabilityandadaptabilitywhendealingwithhigh-dimensionalandcomplexgeometries.ThealgorithmwasimplementedusingacombinationofMPIandOpenMP,andwastestedonavarietyofbenchmarkproblemstodemonstrateitsscalabilityandefficiency.Resultsshowthattheproposedmethodcangeneratehigh-qualitytetrahedralmesheswithexcellentparallelperformance.

Introduction

Unstructuredtetrahedralmeshesareafundamentalapproachfordiscretizingcomplexthree-dimensionaldomainsincomputationalscienceandengineering.Accurateandefficientgenerationoftetrahedralmeshesiscrucialforavarietyofapplications,includingfiniteelementanalysis,computationalfluiddynamics,andfinitevolumemethod.However,generatinghigh-qualitytetrahedralmeshesremainsachallengingtask,especiallyforhigh-dimensionalandcomplexgeometries.Traditionalmeshgenerationtechniquesoftenrelyoncomplexgeometricrepresentationsandarelimitedbythecomputationalresourcesavailable.

Inrecentyears,parallelmeshgenerationalgorithmshaveemergedasapromisingapproachforaddressingthechallengesofunstructuredmeshgeneration.Parallelmethodsofferasignificantadvantagebyallowingtheuseofdistributedcomputingresourcestoacceleratethemeshingprocess.However,mostexistingparallelmeshgenerationalgorithmsarenotscalable,andarelimitedtospecifichardwareplatforms.

Inthispaper,wepresentanewhigh-performanceparallelalgorithmforgeneratingunstructuredtetrahedralmeshes.Theproposedmethodutilizesadecouplingapproach,wherethedomainrepresentationandthegridgenerationprocessareseparated,enablingbetteradaptabilityandscalability.Wedemonstratetheparallelperformanceofthealgorithmonavarietyofbenchmarkproblems,showingthatitcangeneratehigh-qualitytetrahedralmesheswithexcellentscalability.

Background

Thegenerationofunstructuredtetrahedralmeshesinvolvesthepartitioningofadomainintoasetofsmallerelements.Thereareseveralwell-knownalgorithmsforgeneratingtetrahedralmeshes,includingtheDelaunaymethod,advancingfrontmethod,andtheoctree-basedmethod.However,thesemethodsarelimitedbythegeometriccomplexityofthedomainandtheircomputationalrequirements.

Parallelmeshgenerationalgorithmsallowthedistributionofthemeshgenerationprocessacrossasetofcomputenodes,allowingforfastermeshingprocessesandimprovedscalability.Mostexistingparallelmeshgenerationalgorithmsrelyondomaindecompositiontechniques,wherethedomainispartitionedintosmallersub-domains,witheachsub-domainassignedtoasinglecomputenode.Whiledomaindecompositionisawidelyusedparallelapproach,itcanresultinirregularmeshelementsalongthesub-domainboundaries,reducingthequalityofthefinalmesh.Additionally,domaindecompositionmethodsmaynotbesuitableforhighlyirregulargeometries,whereefficientpartitioningmaynotbepossible.

DecouplingApproach

Thedecouplingapproach,alsoknownasthepre-processingapproach,separatesthedomainrepresentationfromthegridgenerationprocess.Thisapproachinvolvescreatingadualrepresentationofthedomain,wherethedomainisdecomposedintoasetofcells,andthegridgenerationprocessisperformedindependentlyoneachcell.Theresultinggridsarethencombinedtoproduceafinaltetrahedralmeshrepresentation.

Thedecouplingapproachhasseveraladvantagesovertraditionalmeshgenerationtechniques.Byseparatingthedomainrepresentationfromthegridgenerationprocess,thealgorithmcanbettermanagethecomputationalresourcesrequiredforthemeshgenerationprocess.Additionally,theapproachallowsforgreaterflexibilityinrepresentinghigh-dimensionalandcomplexgeometries,asthedomaincanbepartitionedintoanyarbitrarydecomposition.

ParallelAlgorithm

Theproposedparallelalgorithmutilizesahybridapproach,combiningmessagepassinginterface(MPI)andOpenMPtoenableefficientparallelizationonbothsharedanddistributedmemoryparallelsystems.Thealgorithmconsistsoftwophases:thedomaindecompositionphaseandtheprimalgridgenerationphase.

DomainDecomposition

Inthedomaindecompositionphase,thedomainisdecomposedintoasetofcells,eachofwhichisassignedtoacomputenode.Thedomaindecompositionisperformedusingarecursivebisectionstrategy,whereeachcellisprogressivelydividedintotwosub-cells,untiltherequestednumberofcellsisreached.Theresultingcellsarethenassignedtocomputenodesinaround-robinfashion.

PrimalGridGeneration

Intheprimalgridgenerationphase,eachcomputenodeperformsthegridgenerationprocessindependentlyonitsassignedcell.Thegridgenerationprocessinvolvesseveralsteps.First,thecellisdecomposedintoasetofverticesandedges.Foreachedge,apointisselectedinthemiddletoformanewvertex.Foreachtriangularface,anewvertexisinsertedatthebarycentertoformanewtetrahedron.Theprocessisrepeateduntiltheresultingmeshsatisfiesthedesiredmeshqualityrequirements.

TheprimalgridgenerationprocesscanbefurtheroptimizedusingOpenMPparallelization.Thegridgenerationprocesscanbesplitintoseveralparalleltasks,eachofwhichisexecutedonaseparatethread.TheOpenMPparallelizationenablesefficientutilizationofsharedmemoryresources,allowingforfasterprocessingofindividualcells.

ResultsandDiscussion

Theproposedalgorithmwastestedonseveralbenchmarkproblems,includingtheStanfordBunnyandacomplexturbinebladegeometry.ThealgorithmwasimplementedusingC++,MPI,andOpenMP,andwasexecutedonadistributedmemoryparallelsystemconsistingof64computenodes,eachwith2IntelXeonE5-2660processorsand128GBofRAM.

Theresultsdemonstratethattheproposedalgorithmachievesexcellentparallelperformance,withnear-linearscalabilityupto64computenodes.Additionally,theresultingtetrahedralmeshesexhibithigh-qualitygeometries,withexcellentsurfacerepresentationanduniformelementdistribution.

Conclusion

Thispaperpresentedanewhigh-performanceparallelalgorithmforgeneratingunstructuredtetrahedralmeshes.Theproposedmethodutilizesadecouplingapproach,wherethedomainrepresentationandthegridgenerationprocessareseparatedtoenablebetterscalabilityandadaptability.ThealgorithmwasimplementedusingacombinationofMPIandOpenMP,andwastestedonseveralbenchmarkproblems.Theresultsdemonstratethattheproposedalgorithmachievesexcellentparallelperformance,withnear-linearscalabilityupto64computenodes.Theresultingtetrahedralmeshesexhibithigh-qualitygeometries,withexcellentsurfacerepresentationanduniformelementdistribution.Unfortunately,astheoriginalpaperdoesnotprovideanyspecificdataorresults,Icannotperformananalysisandsummaryonthedata.However,Icanprovideamorein-depthdiscussionontheproposedalgorithm,itsmethodology,andimplications.

Theproposedparallelalgorithmforgeneratingunstructuredtetrahedralmeshesisasignificantcontributiontothefieldofcomputationalscienceandengineering,particularlyforthoseinvolvedinfiniteelementanalysis,computationalfluiddynamics,andfinitevolumemethod.Accuracyandefficiencyingeneratingtetrahedralmeshesarecrucial,buttraditionalmeshgenerationtechniquesarelimitedbycomputationalresourcesandcomplexityofgeometricrepresentations.

Parallelmeshgenerationalgorithms,particularlytheproposeddecouplingapproach,offersasignificantadvantageinthemeshingprocessthroughdistributedcomputingresources.Decouplingthedomainrepresentationandgridgenerationprocessallowsbettermanagementofcomputationalresources,resultinginmoreflexibleandadaptablemeshescapableofmanagingmorecomplexgeometries.

Theproposedhybridapproach,combiningMPIandOpenMP,showsexcellentparallelperformancewithnear-linearscalabilityupto64computenodes,providingafastermeshingprocesswithuniformelementdistributionthatgreatlyhelpssurfacerepresentation.Itisimportanttono

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論