版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市崇明區(qū)市級名校2022-2023學年高三一輪階段測評(三)數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合的子集的個數是()A.2 B.3 C.4 D.82.數列滿足,且,,則()A. B.9 C. D.73.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.4.“十二平均律”是通用的音律體系,明代朱載堉最早用數學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.5.某個小區(qū)住戶共200戶,為調查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.1406.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.7.下列函數中,值域為的偶函數是()A. B. C. D.8.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④9.已知集合,定義集合,則等于()A. B.C. D.10.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.11.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.12.若平面向量,滿足,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x,y均為正數,且,則的最小值為________.14.已知,滿足不等式組,則的取值范圍為________.15.圖(1)是第七屆國際數學教育大會(ICME-7)的會徽圖案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.16.已知,則=___________,_____________________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,所對的邊分別為,,,且.求的值;設的平分線與邊交于點,已知,,求的值.18.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).19.(12分)設(1)證明:當時,;(2)當時,求整數的最大值.(參考數據:,)20.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.21.(12分)在平面直角坐標系xOy中,曲線的參數方程為(,為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點M對應的參數,射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.22.(10分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.2、A【解析】
先由題意可得數列為等差數列,再根據,,可求出公差,即可求出.【詳解】數列滿足,則數列為等差數列,,,,,,,故選:.【點睛】本題主要考查了等差數列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、C【解析】
框圖的功能是求等比數列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結果,故.故選:C.【點睛】本題考查程序框圖的應用,建議數據比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.4、D【解析】分析:根據等比數列的定義可知每一個單音的頻率成等比數列,利用等比數列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數列的實際應用,解決本題的關鍵是能夠判斷單音成等比數列.等比數列的判斷方法主要有如下兩種:(1)定義法,若()或(),數列是等比數列;(2)等比中項公式法,若數列中,且(),則數列是等比數列.5、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內用水量超過15立方米的住戶戶數為,故選C6、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.7、C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.8、C【解析】
分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.9、C【解析】
根據定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.10、A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.11、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數量積的運算性質、向量垂直與數量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.12、C【解析】
可根據題意把要求的向量重新組合成已知向量的表達,利用向量數量積的性質,化簡為三角函數最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.14、【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.15、【解析】
先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過點作的平行線交于點,那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:【點睛】本題主要考查平面向量數量積,解題關鍵是找到向量和的夾角.16、?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、;.【解析】
利用正弦定理化簡求值即可;利用兩角和差的正弦函數的化簡公式,結合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內角,故,,則,故,;(2)平分,設,則,,,,則,,又,則在中,由正弦定理:,.【點睛】本題考查正弦定理和兩角和差的正弦函數的化簡公式,二倍角公式,考查運算能力,屬于基礎題.18、(1)1;(2)見解析【解析】
(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數與函數單調性關系,放縮法在證明不等式中的應用,屬于難題.19、(1)證明見解析;(2).【解析】
(1)將代入函數解析式可得,構造函數,求得并令,由導函數符號判斷函數單調性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數求導,變形后討論當時的函數單調情況:當時,可知滿足題意;將不等式化簡后構造函數,利用導函數求得極值點與函數的單調性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數的最大值;當時不滿足題意,因為求整數的最大值,所以時無需再討論.【詳解】(1)證明:當時代入可得,令,,則,令解得,當時,所以在單調遞增,當時,所以在單調遞減,所以,則,即成立.(2)函數則,若時,當時,,則在時單調遞減,所以,即當時成立;所以此時需滿足的整數解即可,將不等式化簡可得,令則令解得,當時,即在內單調遞減,當時,即在內單調遞增,所以當時取得最小值,則,,,所以此時滿足的整數的最大值為;當時,在時,此時,與題意矛盾,所以不成立.因為求整數的最大值,所以時無需再討論,綜上所述,當時,整數的最大值為.【點睛】本題考查了導數在證明不等式中的應用,導數與函數單調性、極值、最值的關系和應用,構造函數法求最值,并判斷函數值法符號,綜合性強,屬于難題.20、(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系,圓與橢圓的位置關系.點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理.存在性問題,往往從假設存在出發(fā),運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應用平面向量知識證明了圓的存在性.21、(1)..(2)【解析】
(1)先求解a,b,消去參數,即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,,代入曲線直角坐標方程,可得的關系,轉化,可得解.【詳解】(1)將及對應的參數,代入得,即,所以曲線的方程為,為參數,所以曲線的直角坐標方程為.設圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為.(2)由于,故可設,代入曲線直角坐標方程,可得,,所以.【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 禮服商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 化妝用漂白劑脫色劑產品供應鏈分析
- 腰包商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 醫(yī)用軟化水產品供應鏈分析
- 塑料旅行袋產業(yè)鏈招商引資的調研報告
- 個人資產保險索賠評估行業(yè)市場調研分析報告
- 書籍裝訂用布產業(yè)鏈招商引資的調研報告
- 編碼和解碼裝置和儀器產品供應鏈分析
- 產品質量檢測服務行業(yè)營銷策略方案
- 電動織毯機市場發(fā)展前景分析及供需格局研究預測報告
- 職業(yè)暴露針刺傷應急預案演練腳本-
- 大學物理-麥克斯韋速率分布定律
- 優(yōu)先合理使用基本藥物督查分析反饋表
- 金蝶案例分析
- 陳麗芝《新疆之春》教案5
- 群文閱讀(三年級下冊第一單元)
- 《地震》教學設計
- 軟件開發(fā)保密措施
- 大一新生的學業(yè)規(guī)劃書(6篇)
- 0-高壓蒸汽管線焊縫返修施工方案
- LY/T 1451-2017纖維板生產綜合能耗
評論
0/150
提交評論