安徽省浮山中學(xué)等重點(diǎn)名校2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁
安徽省浮山中學(xué)等重點(diǎn)名校2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁
安徽省浮山中學(xué)等重點(diǎn)名校2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁
安徽省浮山中學(xué)等重點(diǎn)名校2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁
安徽省浮山中學(xué)等重點(diǎn)名校2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省浮山中學(xué)等重點(diǎn)名校2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列中,,,則公比()A. B.C. D.2.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運(yùn)送到形狀為四邊形區(qū)域的農(nóng)貿(mào)市場(chǎng)中去,現(xiàn)要求在農(nóng)貿(mào)市場(chǎng)中確定一條界線,使位于界線一側(cè)的點(diǎn)沿道路運(yùn)送蔬菜較近,而另一側(cè)的點(diǎn)沿道路運(yùn)送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線3.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.4.已知等差數(shù)列滿足,,數(shù)列滿足,記數(shù)列的前n項(xiàng)和為,若對(duì)于任意的,,不等式恒成立,則實(shí)數(shù)t的取值范圍為()A. B.C. D.5.在公比為的等比數(shù)列中,前項(xiàng)和,則()A.1 B.2C.3 D.46.設(shè)等差數(shù)列的前n項(xiàng)和為,,公差為d,,,則下列結(jié)論不正確的是()A. B.當(dāng)時(shí),取得最大值C. D.使得成立的最大自然數(shù)n是157.已知?jiǎng)狱c(diǎn)滿足,則動(dòng)點(diǎn)的軌跡是()A.橢圓 B.直線C.線段 D.圓8.若函數(shù)在上有且僅有一個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.10.下列關(guān)于斜二測(cè)畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④11.我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為,設(shè)張華第個(gè)月的還款金額為元,則()A.2192 B.C. D.12.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:的兩焦點(diǎn)分別為,,P為雙曲線C上一點(diǎn),若,則=___________.14.過點(diǎn)且與直線平行的直線的方程是______.15.已知向量,,并且、共線且方向相同,則______.16.如圖,橢圓的左、右焦點(diǎn)分別為,過橢圓上的點(diǎn)作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,點(diǎn)A(2,4),直線l:,設(shè)圓C的半徑為1,圓心在直線l上,圓心也在直線上.(1)求圓C的方程;(2)過點(diǎn)A作圓C的切線,求切線的方程.18.(12分)已知拋物線的焦點(diǎn)為,直線與拋物線的準(zhǔn)線交于點(diǎn),為坐標(biāo)原點(diǎn),(1)求拋物線的方程;(2)直線與拋物線交于,兩點(diǎn),求的面積19.(12分)如圖,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱BC,CD的中點(diǎn)(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.20.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)的值21.(12分)如圖甲,平面圖形中,,沿將折起,使點(diǎn)到點(diǎn)的位置,如圖乙,使.(1)求證:平面平面;(2)若點(diǎn)滿足,求點(diǎn)到直線的距離.22.(10分)△的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知(1)求角B的大??;(2)若△不為鈍角三角形,且,,求△的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用等比中項(xiàng)的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,解得,又,,故選:C.2、C【解析】設(shè)是界限上的一點(diǎn),則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設(shè)是界限上的一點(diǎn),則,所以,即,在中,,所以點(diǎn)的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.3、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.4、B【解析】由等差數(shù)列基本量法求出通項(xiàng)公式,用裂項(xiàng)相消法求得,求出的最大值,然后利用關(guān)于的不等式是一次不等式列出滿足的不等關(guān)系求得其范圍【詳解】設(shè)等差數(shù)列公差為,則由已知得,解得,∴,,∴,易知數(shù)列是遞增數(shù)列,且,∴若對(duì)于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點(diǎn)睛】本題考查求等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的和,考查不等式恒成立問題,解題關(guān)鍵是掌握不等式恒成立問題的轉(zhuǎn)化與化歸思想,不等式恒成立首先轉(zhuǎn)化為求數(shù)列的單調(diào)性與最值,其次轉(zhuǎn)化為一次不等式恒成立5、C【解析】先利用和的關(guān)系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.6、D【解析】根據(jù)等差數(shù)列等差中項(xiàng)的性質(zhì),求和公式及單調(diào)性分別判斷.【詳解】因?yàn)椋?,所以,則,故A正確;當(dāng)時(shí),取得最大值,故B正確;,故C正確;因?yàn)?,,,所以使得成立的最大自然?shù)是,故D錯(cuò)誤.故選:D7、C【解析】根據(jù)兩點(diǎn)之間的距離公式的幾何意義即可判定出動(dòng)點(diǎn)軌跡.【詳解】由題意可知表示動(dòng)點(diǎn)到點(diǎn)和點(diǎn)的距離之和等于,又因?yàn)辄c(diǎn)和點(diǎn)的距離等于,所以動(dòng)點(diǎn)的軌跡為線段.故選:8、C【解析】根據(jù)極值點(diǎn)的意義,可知函數(shù)的導(dǎo)函數(shù)在上有且僅有一個(gè)零點(diǎn).結(jié)合零點(diǎn)存在定理,即可求得的取值范圍.【詳解】函數(shù)則因?yàn)楹瘮?shù)在上有且僅有一個(gè)極值點(diǎn)即在上有且僅有一個(gè)零點(diǎn)根據(jù)函數(shù)零點(diǎn)存在定理可知滿足即可代入可得解得故選:C【點(diǎn)睛】本題考查了函數(shù)極值點(diǎn)的意義,函數(shù)零點(diǎn)存在定理的應(yīng)用,屬于中檔題.9、C【解析】按照程序框圖的流程進(jìn)行計(jì)算.【詳解】,故輸出S的值為.故選:C10、B【解析】根據(jù)斜二側(cè)直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結(jié)論【詳解】由斜二測(cè)畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據(jù)平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據(jù)兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯(cuò)誤;根據(jù)平行于x軸的長(zhǎng)度不變,平行于y軸的長(zhǎng)度減半知,正方形的直觀圖不再是正方形,所以④錯(cuò)誤.故選:B.11、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個(gè)月的還款金額為元,則,故選:D12、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計(jì)算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、18或2##2或18【解析】先由雙曲線的方程求出,再利用雙曲線的定義列方程求解即可【詳解】由,得,則,因?yàn)殡p曲線C:的兩焦點(diǎn)分別為,,P為雙曲線C上一點(diǎn),所以,即,所以或,因?yàn)?,所以或都符合題意,故答案為:18或214、【解析】設(shè)出直線的方程,代入點(diǎn)的坐標(biāo),求出直線的方程.【詳解】設(shè)過點(diǎn)且與直線平行的直線的方程為,將代入,則,解得:,所以直線的方程為.故答案為:15、4【解析】根據(jù)空間向量共線基本定理,可設(shè).由坐標(biāo)運(yùn)算求得的值,進(jìn)而求得.即可求得的值.【詳解】根據(jù)空間向量共線基本定理,可設(shè)由向量的坐標(biāo)運(yùn)算可得解方程可得所以.故答案為:【點(diǎn)睛】本題考查了空間向量共線基本定理的應(yīng)用,根據(jù)向量的共線定理求參數(shù),屬于基礎(chǔ)題.16、【解析】根據(jù)題意可得,利用推出,進(jìn)而得出結(jié)果.【詳解】由題意知,,將代入方程中,得,因?yàn)椋?,整理,得,又,所以,由,解?故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)直接求出圓心的坐標(biāo),寫出圓的方程;(2)分斜率存在和斜率不存在進(jìn)行分類討論,利用幾何法列方程,即可求解.【小問1詳解】由圓心C在直線l:上可設(shè):點(diǎn),又C也在直線上,∴,∴又圓C的半徑為1,∴圓C的方程為.【小問2詳解】當(dāng)直線垂直于x軸時(shí),與圓C相切,此時(shí)直線方程為.當(dāng)直線與x軸不垂直時(shí),設(shè)過A點(diǎn)的切線方程為,即,則,解得.此時(shí)切線方程,.綜上所述,所求切線為或18、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達(dá)定理整體思想求的長(zhǎng),再求點(diǎn)到直線的距離,進(jìn)而求面積.【小問1詳解】由題意可得,,則,因?yàn)?,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點(diǎn)到直線的距離聯(lián)立,整理得設(shè),,則,從而因?yàn)橹本€過拋物線的焦點(diǎn),所以故的面積為19、(1)證明見解析;(2).【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)利用向量法求得直線與平面所成角的正弦值.【詳解】(1)建立如圖所示空間直角坐標(biāo)系.,,設(shè)平面的法向量為,則,故可設(shè).由于,所以平面.(2)直線與平面所成角為,則.20、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1)證明見解析(2)【解析】(1)利用給定條件可得平面,再證即可證得平面推理作答.(2)由(1)得EA,EB,EG兩兩垂直,建立空間直角坐標(biāo)系,先求出向量在向量上的投影的長(zhǎng),然后由勾股定理可得答案.【小問1詳解】因?yàn)?,則,且,又,平面,因此,平面,即有平面,平面,則,而,則四邊形為等腰梯形,又,則有,于是有,則,即,,平面,因此,平面,而平面,所以平面平面.【小問2詳解】由(1)知,EA,EB,EG兩兩垂直,以點(diǎn)E為原點(diǎn),射線E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論