版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市朝陽(yáng)區(qū)17中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種2.在中,B=60°,,,則AC邊的長(zhǎng)等于()A. B.C. D.3.設(shè)命題,則為()A. B.C. D.4.魯班鎖運(yùn)用了中國(guó)古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時(shí)代各國(guó)工匠魯班所作,是由六根內(nèi)部有槽的長(zhǎng)方形木條,按橫豎立三方向各兩根凹凸相對(duì)咬合一起,形成的一個(gè)內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見(jiàn)的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個(gè)構(gòu)件的圖片,下圖2是其中的一個(gè)構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.5.用斜二測(cè)畫法畫出邊長(zhǎng)為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.6.某公司要建造一個(gè)長(zhǎng)方體狀的無(wú)蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價(jià)為15元,箱壁每1m2造價(jià)為12元,則箱子的最低總造價(jià)為()A.72元 B.300元C.512元 D.816元7.已知數(shù)列滿足,則()A.2 B.C.1 D.8.拋物線的焦點(diǎn)坐標(biāo)是()A. B.C. D.9.已知,,點(diǎn)為圓上任意一點(diǎn),設(shè),則的最大值為()A. B.C. D.10.設(shè),直線與直線平行,則()A. B.C. D.11.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.12.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點(diǎn),則的歐拉線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列,的前n項(xiàng)和分別為,若,則=______14.已知等比數(shù)列滿足,則_________15.已知數(shù)列是等差數(shù)列,若,則___________.16.已知直線l是拋物線()的準(zhǔn)線,半徑為的圓過(guò)拋物線的頂點(diǎn)O和焦點(diǎn)F,且與l相切,則拋物線C的方程為_(kāi)__________;若A為C上一點(diǎn),l與C的對(duì)稱軸交于點(diǎn)B,在中,,則的值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)求函數(shù)在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值18.(12分)如圖,在正三棱柱中,,,,分別為,,的中點(diǎn)(1)證明:(2)求平面與平面所成銳二面角的余弦值19.(12分)如圖,矩形ABCD,點(diǎn)E,F(xiàn)分別是線段AB,CD的中點(diǎn),,,以EF為軸,將正方形AEFD翻折至與平面EBCF垂直的位置處.請(qǐng)按圖中所給的方法建立空間直角坐標(biāo)系,然后用空間向量坐標(biāo)法完成下列問(wèn)題(1)求證:直線平面;(2)求直線與平面所成角的正弦值.20.(12分)在空間直角坐標(biāo)系Oxyz中,O為原點(diǎn),已知點(diǎn),,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)k的值.21.(12分)年月日,中國(guó)向世界莊嚴(yán)宣告,中國(guó)脫貧攻堅(jiān)戰(zhàn)取得了全面勝利,現(xiàn)行標(biāo)準(zhǔn)下萬(wàn)農(nóng)村貧困人口全部脫貧,個(gè)貧困縣全部摘帽,萬(wàn)個(gè)貧困村全部出列,區(qū)域性整體貧困得到解決,完成了消除絕對(duì)貧困的艱巨任務(wù),困擾中華民族幾千年的絕對(duì)貧困問(wèn)題得到了歷史性的解決!為了鞏固脫貧成果,某農(nóng)科所實(shí)地考察,研究發(fā)現(xiàn)某脫貧村適合種植、兩種經(jīng)濟(jì)作物,可以通過(guò)種植這兩種經(jīng)濟(jì)作物鞏固脫貧成果,通過(guò)大量考察研究得到如下統(tǒng)計(jì)數(shù)據(jù):經(jīng)濟(jì)作物的畝產(chǎn)量約為公斤,其收購(gòu)價(jià)格處于上漲趨勢(shì),最近五年的價(jià)格如下表:年份編號(hào)年份單價(jià)(元/公斤)經(jīng)濟(jì)作物的收購(gòu)價(jià)格始終為元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:(1)若經(jīng)濟(jì)作物的單價(jià)(單位:元/公斤)與年份編號(hào)具有線性相關(guān)關(guān)系,請(qǐng)求出關(guān)于的回歸直線方程,并估計(jì)年經(jīng)濟(jì)作物的單價(jià);(2)用上述頻率分布直方圖估計(jì)經(jīng)濟(jì)作物的平均畝產(chǎn)量(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表),若不考慮其他因素,試判斷年該村應(yīng)種植經(jīng)濟(jì)作物還是經(jīng)濟(jì)作物?并說(shuō)明理由附:,22.(10分)在平面直角坐標(biāo)系中,點(diǎn),直線軸,垂足為H,,圓N過(guò)點(diǎn)O,與l的公共點(diǎn)的軌跡為(1)求的方程;(2)過(guò)M的直線與交于A,B兩點(diǎn),若,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D2、B【解析】根據(jù)正弦定理直接計(jì)算可得答案.【詳解】由正弦定理,,得,故選:B.3、D【解析】利用含有一個(gè)量詞的命題的否定的定義判斷.【詳解】因?yàn)槊}是全稱量詞命題,所以其否定是存在量詞命題,即,故選:D4、B【解析】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,進(jìn)而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,如下圖所示,其表面積為:.故選:B.【點(diǎn)睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.5、A【解析】畫出直觀圖,求出底和高,進(jìn)而求出面積.【詳解】如圖,,,,過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.6、D【解析】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價(jià)【詳解】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時(shí),f(x)取最小值816元故選:D7、D【解析】首先得到數(shù)列的周期,再計(jì)算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D8、C【解析】化為標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)公式求解.【詳解】拋物線的標(biāo)準(zhǔn)方程為,所以拋物線的焦點(diǎn)在軸上,且,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.故選:C9、C【解析】根據(jù)題意可設(shè),再根據(jù),求出,再利用三角函數(shù)的性質(zhì)即可得出答案.【詳解】解:由點(diǎn)為圓上任意一點(diǎn),可設(shè),則,由,得,所以,則,則,其中,所以當(dāng)時(shí),取得最大值為22.故選:C.10、C【解析】根據(jù)直線平行求解即可.【詳解】因?yàn)橹本€與直線平行,所以,即,經(jīng)檢驗(yàn),滿足題意.故選:C11、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.12、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因?yàn)椋跃€段的中點(diǎn)的坐標(biāo),線段所在直線的斜率,則線段的垂直平分線的方程為,即,因?yàn)?,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點(diǎn)睛】本題主要考走查直線的方程,解題的關(guān)鍵是準(zhǔn)確找出歐拉線,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等差數(shù)列的性質(zhì)和等差數(shù)列的前項(xiàng)和公式可得,再令即可求解.【詳解】由等差數(shù)列的性質(zhì)和等差數(shù)列的前項(xiàng)和公式可得:因?yàn)椋蚀鸢笧椋骸军c(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵是利用等差數(shù)列的性質(zhì)可得,再轉(zhuǎn)化為前項(xiàng)和公式的形式,代入的值即可.14、84【解析】設(shè)公比為q,求出,再由通項(xiàng)公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:8415、8【解析】利用計(jì)算可得答案.【詳解】設(shè)等差數(shù)列的公差為,故答案為:8.16、①.②.【解析】(1)由題意得:圓的圓心橫坐標(biāo)為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點(diǎn)的坐標(biāo),即可得到答案;【詳解】由題意得:圓的圓心橫坐標(biāo)為,半徑為,,拋物線C的方程為;設(shè)到準(zhǔn)線的距離為,,,,,代入,解得:,,,故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點(diǎn)斜式即可得解;(2)求出函數(shù)導(dǎo)數(shù)后,解一元二次不等式分別求出、時(shí)的取值范圍即可得解.【詳解】(1)因?yàn)?,所以,∴切線方程為,即+1;(2),所以當(dāng)或時(shí),,當(dāng)時(shí),,所以函數(shù)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,極大值為,極小值為18、(1)證明見(jiàn)解析(2)【解析】(1)由已知,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別表示出B、D、E、F點(diǎn)的坐標(biāo),然后通過(guò)計(jì)算向量數(shù)量積來(lái)進(jìn)行證明;(2)由第(1)建立的空間直角坐標(biāo)系,分別表示出對(duì)應(yīng)點(diǎn)的坐標(biāo),然后計(jì)算平面與平面的法向量,然后通過(guò)法向量去計(jì)算兩平面所成的銳二面角即可.【小問(wèn)1詳解】如圖,以為坐標(biāo)原點(diǎn),以,的方向分別為,軸的正方向建立如圖所示的空間直角坐標(biāo)系,由,,,分別為,,的中點(diǎn),則,,證明:因?yàn)椋?,所以,所以【小?wèn)2詳解】設(shè)平面的法向量為,因?yàn)椋?,所以,令,得設(shè)平面的法向量為,則令,得因?yàn)樗云矫媾c平面所成銳二面角的余弦值為19、(1)證明見(jiàn)解析;(2).【解析】(1)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出對(duì)應(yīng)向量的坐標(biāo),根據(jù)向量垂直,即可證明線面垂直;(2)根據(jù)(1)中所求平面的法向量,利用向量法,即可容易求得結(jié)果.【小問(wèn)1詳解】矩形ABCD中,點(diǎn)E,F(xiàn)分別是線段AB,CD的中點(diǎn),∴,∴翻折后∵平面平面,且面,面,故可得面,又面,∴,故兩兩垂直,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系:∵,則,,,,,,∵,,∴,∴,,又面,∴平面.【小問(wèn)2詳解】由(1)知,平面的法向量為,又向量,則向量與法向量為所成角的余角即是直線與平面所成角,設(shè)直線與平面所成角為,向量與法向量為所成角為,則.故直線與平面所成角正弦值為.20、(1)(2)【解析】(1)由向量的坐標(biāo)先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問(wèn)1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問(wèn)2詳解】由與的互相垂直知,,,即21、(1),元/公斤;(2)應(yīng)該種植經(jīng)濟(jì)作物;理由見(jiàn)解析【解析】(1)利用表格數(shù)據(jù)求出中心點(diǎn)值,再利用最小二乘法求出回歸直線方程,進(jìn)而利用所求方程進(jìn)行預(yù)測(cè);(2)先利用頻率分布直方圖的每個(gè)小矩形面積之和為1求得值,再利用平均值公式求其平均值,再比較兩種作物的畝產(chǎn)量進(jìn)行求解.【詳解】(1),,則關(guān)于回歸直線方程為當(dāng)時(shí),,即估計(jì)年經(jīng)濟(jì)作物的單價(jià)為元/公斤(2)利用頻率和為得:,所以經(jīng)濟(jì)作物的畝產(chǎn)量的平均值為:,故經(jīng)濟(jì)作物畝產(chǎn)值為元,經(jīng)濟(jì)作物
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級(jí)上冊(cè)數(shù)學(xué)教研組工作計(jì)劃范文評(píng)價(jià)
- 【學(xué)練考】2021-2022蘇教版化學(xué)必修1練習(xí)-專題3-從礦物到基礎(chǔ)材料
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案
- 五年級(jí)數(shù)學(xué)(小數(shù)乘除法)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 全程方略2021屆高考數(shù)學(xué)專項(xiàng)精析精煉:2014年考點(diǎn)48-隨機(jī)事件的概率、古典概型、幾何概型
- 家長(zhǎng)進(jìn)課堂小學(xué)生食品安演示教學(xué)
- 增塑劑聚酯薄膜行業(yè)分析
- 2018-2019學(xué)年高中生物-第三章-遺傳的分子基礎(chǔ)本章知識(shí)體系構(gòu)建課件-浙科版必修2
- (期末押題卷)期末重難點(diǎn)高頻易錯(cuò)培優(yōu)卷(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版
- 2024版反擔(dān)保合同與反擔(dān)保抵押合同
- 【小米公司財(cái)務(wù)共享服務(wù)中心的構(gòu)建與運(yùn)行探究8200字(論文)】
- 成人癌性疼痛護(hù)理-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)2019
- 勞動(dòng)保障監(jiān)察條例
- 2023年建筑繼續(xù)教育考試:安全員繼續(xù)教育真題模擬匯編(共830題)
- 冷卻塔驗(yàn)收表
- 外科科主任工作計(jì)劃
- 施工圖設(shè)計(jì)提資管控細(xì)則
- 人教部編版八年級(jí)語(yǔ)文上冊(cè)名著導(dǎo)讀《紅星照耀中國(guó)》復(fù)習(xí)素材
- 【個(gè)人簡(jiǎn)歷】大學(xué)生職業(yè)生涯規(guī)劃書10篇
- 患者滿意度調(diào)查分析
- 印刷公司績(jī)效考核KPI指標(biāo)庫(kù)
評(píng)論
0/150
提交評(píng)論