河南省周口市淮陽一中2023年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
河南省周口市淮陽一中2023年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
河南省周口市淮陽一中2023年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
河南省周口市淮陽一中2023年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
河南省周口市淮陽一中2023年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省周口市淮陽一中2023年高二上數(shù)學期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數(shù)m的最大值為2021C.“”是“函數(shù)在內有零點”的必要不充分條件D.已知,且,則的最小值為92.設,分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標原點,則雙曲線的離心率為()A. B.2C. D.3.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.4.已知1與5的等差中項是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.65.與的等差中項是()A. B.C. D.6.在空間直角坐標系中,點關于平面的對稱點的坐標是()A. B.C. D.7.為了調查修水縣2019年高考數(shù)學成績,在高考后對我縣6000名考生進行了抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數(shù)學成績作為一個樣本,這項調查宜采用的抽樣方法是()A.系統(tǒng)抽樣法 B.分層抽樣法C.抽簽法 D.簡單的隨機抽樣法8.與圓和圓都外切的圓的圓心在()A.一個圓上 B.一個橢圓上C.雙曲線的一支上 D.一條拋物線上9.執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.10.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.2411.已知直線過點,,則該直線的傾斜角是()A. B.C. D.12.已知直線與平行,則系數(shù)()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.14.若拋物線上一點到其準線的距離為4,則拋物線的標準方程為___________.15.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.16.寫出同時滿足以下三個條件的數(shù)列的一個通項公式______.①不是等差數(shù)列,②是等比數(shù)列,③是遞增數(shù)列三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,其頂點坐標為.(1)求直線的方程;(2)求的面積.18.(12分)平面直角坐標系中,曲線與坐標軸交點都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點,在圓上是否存在一點,使得四邊形為菱形?若存在,求出此時直線的方程;若不存在,說明理由.19.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標21.(12分)已知點,直線:,直線m過點N且與垂直,直線m交圓于兩點A,B.(1)求直線m的方程;(2)求弦AB的長.22.(10分)已知橢圓的右焦點是橢圓上的一動點,且的最小值是1,當垂直長軸時,.(1)求橢圓的標準方程;(2)設直線與橢圓相切,且交圓于兩點,求面積的最大值,并求此時直線方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據(jù)充分不必要條件直接判斷;對于C:判斷出“”是“函數(shù)在內有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數(shù)m的最大值為2021.故B正確;對于C:“函數(shù)在內有零點”,則,解得:或,所以“”是“函數(shù)在內有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C2、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標,再用兩點間的距離公式,結合已知條件,得到關于a,c的關系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標為,又因為,所以,所以,所以.故選:D3、D【解析】焦點三角形問題,可結合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關系,從而得到關系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關系4、A【解析】由等差中項的概念列式求得值,再由等比數(shù)列的通項公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.5、A【解析】代入等差中項公式即可解決.【詳解】與的等差中項是故選:A6、C【解析】根據(jù)空間里面點關于面對稱的性質即可求解.【詳解】在空間直角坐標系中,點關于平面的對稱點的坐標是.故選:C.7、B【解析】考生分為幾個不同的類型或層次,由此可以確定抽樣方法;【詳解】6000名考生進行抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數(shù)學成績作為一個樣本又文科考生、理科考生、藝術和體育類考生會存在差異,采用分層抽樣法較好故選:B.【點睛】本題主要考查的是分層抽樣,掌握分層抽樣的有關知識是解題的關鍵,屬于基礎題.8、C【解析】設動圓的半徑為,然后根據(jù)動圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點的軌跡是雙曲線的一支故選:C9、B【解析】根據(jù)程序框圖的循環(huán)邏輯寫出其執(zhí)行步驟,即可確定輸出結果.【詳解】由程序框圖的邏輯,執(zhí)行步驟如下:1、:執(zhí)行循環(huán),,;2、:執(zhí)行循環(huán),,;3、:執(zhí)行循環(huán),,;4、:執(zhí)行循環(huán),,;5、:執(zhí)行循環(huán),,;6、:不成立,跳出循環(huán).∴輸出的值為.故選:B.10、B【解析】根據(jù)等差數(shù)列通項公式相關計算求出公差,進而求出首項.【詳解】設公差為,由題意得:,解得:,所以.故選:B11、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設該直線的傾斜角為,該直線的斜率,即.故選:C12、B【解析】由直線的平行關系可得,解之可得【詳解】解:直線與直線平行,,解得故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質;考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質是求解本題的關鍵;屬于中檔題、??碱}型.14、【解析】先由拋物線的方程求出準線的方程,然后根據(jù)點到準線的距離可求,進而可得拋物線的標準方程.【詳解】拋物線的準線方程為,點到其準線的距離為,由題意可得,解得,故拋物線的標準方程為.故答案為:.15、【解析】設點關于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設,可得出直線的方程為,設點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設點關于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設,則直線的方程為,設點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.16、【解析】由條件②寫出一個等比數(shù)列,再求出并確保單調遞增即可作答.【詳解】因是等比數(shù)列,令,當時,,,是遞增數(shù)列,令是互不相等的三個正整數(shù),且,若,,成等差數(shù)列,則,即,則有,顯然、都是正整數(shù),,都是偶數(shù),于是得是奇數(shù),從而有不成立,即,,不成等差數(shù)列,數(shù)列不成等差數(shù)列,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求出AB的斜率,再利用點斜式寫出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問1詳解】由已知,,所以直線的方程為,即.【小問2詳解】,C到直線AB的距離為,所以的面積為.18、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關系可得,然后利用菱形的性質可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點為,與軸的交點為,,設圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點,圓化為,圓心坐標為,半徑為.∴圓心到直線的距離,解得.假設存在點,使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗證滿足條件.∴存在點,使得四邊形為菱形,此時的直線方程為或.19、(1)(2)或【解析】(1)將橢圓化為標準方程,求得,進而求得離心率;(2)設直線,,,與橢圓聯(lián)立,借助韋達定理及弦長公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設直線,,聯(lián)立,化簡得,則,解得,,由弦長公式知,,解得,故直線或20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設斜率存在,設出直線,利用斜率之和為,求出之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關鍵點在于先假設斜率存在,設出直線,利用題目所給條件得到之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1)(2)【解析】(1)求出斜率,用點斜式求直線方程;(2)利用垂徑定理求弦長.【小問1詳解】因為直線:,所以直線的斜率為.因為直線m過點N且與垂直,所以直線的斜率為,又過點,所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長22、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結合,求得的值,即可求得橢圓的方程.(2)設切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結合點到直線的距離公式和圓的弦長公式,求得的面積的表示,結合函數(shù)的單調性,即可求解.【詳解】(1)由題意,點橢圓上的一動點,且的最小值是1,得,因為當垂直長軸時,可得,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論