江蘇省蘇州市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)
江蘇省蘇州市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)
江蘇省蘇州市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)
江蘇省蘇州市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)
江蘇省蘇州市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省蘇州市2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓心,半徑為的圓的方程是()A. B.C. D.2.已知直線是圓的對(duì)稱軸,過點(diǎn)A作圓C的一條切線,切點(diǎn)為B,則|AB|=()A.1 B.2C.4 D.83.已知直線與平行,則的值為()A. B.C. D.4.用斜二測(cè)畫法畫出邊長(zhǎng)為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.5.橢圓的長(zhǎng)軸長(zhǎng)是()A.3 B.6C.9 D.46.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.已知直線過點(diǎn),且其方向向量,則直線的方程為()A. B.C. D.8.若向量則()A. B.3C. D.9.已知橢圓和雙曲線有共同的焦點(diǎn),分別是它們的在第一象限和第三象限的交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.310.已知函數(shù)的導(dǎo)函數(shù)滿足,則()A. B.C.3 D.411.命題“?x∈[1,2],x2-a≤0”為真命題的一個(gè)充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤512.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列中,則q=___14.若分別是平面的法向量,且,,,則的值為________.15.?dāng)?shù)列的前項(xiàng)和為,則的通項(xiàng)公式為________.16.底面半徑為1,母線長(zhǎng)為2的圓錐的體積為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍18.(12分)已知為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,,為橢圓的上頂點(diǎn),以為圓心且過的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線交橢圓于兩點(diǎn).(?。┤糁本€的斜率等于,求面積的最大值;(ⅱ)若,點(diǎn)在上,.證明:存在定點(diǎn),使得為定值.19.(12分)如圖所示,橢圓的左、右焦點(diǎn)分別為、,左、右頂點(diǎn)分別為、,為橢圓上一點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn),已知橢圓的離心率為,△的周長(zhǎng)為8(1)求橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為①當(dāng),,成等差數(shù)列時(shí),求點(diǎn)的坐標(biāo);②若直線、分別與直線交于點(diǎn)、,以為直徑的圓是否經(jīng)過某定點(diǎn)?若經(jīng)過定點(diǎn),求出定點(diǎn)坐標(biāo);若不經(jīng)過定點(diǎn),請(qǐng)說明理由20.(12分)已知圓C:(1)若點(diǎn),求過點(diǎn)的圓的切線方程;(2)若點(diǎn)為圓的弦的中點(diǎn),求直線的方程21.(12分)已知函數(shù),其中常數(shù),(1)求單調(diào)區(qū)間;(2)若且對(duì)任意,都有,證明:方程有且只有兩個(gè)實(shí)根22.(10分)設(shè)函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)圓心坐標(biāo)及半徑,即可得到圓的方程.【詳解】因?yàn)閳A心為,半徑為,所以圓的方程為:.故選:D.2、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點(diǎn)A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點(diǎn)A坐標(biāo)為,,切點(diǎn)為B則,故選:C【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.3、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.4、A【解析】畫出直觀圖,求出底和高,進(jìn)而求出面積.【詳解】如圖,,,,過點(diǎn)C作CD⊥x軸于點(diǎn)D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.5、B【解析】根據(jù)橢圓方程有,即可確定長(zhǎng)軸長(zhǎng).【詳解】由橢圓方程知:,故長(zhǎng)軸長(zhǎng)為6.故選:B6、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時(shí),,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時(shí),不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B7、D【解析】根據(jù)題意和直線的點(diǎn)方向式方程即可得出結(jié)果.【詳解】因?yàn)橹本€過點(diǎn),且方向向量為,由直線的點(diǎn)方向式方程,可得直線的方程為:,整理,得.故選:D8、D【解析】先求得,然后根據(jù)空間向量模的坐標(biāo)運(yùn)算求得【詳解】由于向量,,所以.故故選:D9、A【解析】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡(jiǎn)得,兩邊同除以,得.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查共焦點(diǎn)的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點(diǎn)三角形的關(guān)系列出齊次方程式進(jìn)行求解.10、C【解析】先對(duì)函數(shù)求導(dǎo),再由,可求出的關(guān)系式,然后求【詳解】由,得,因?yàn)?,所以,所以,故選:C11、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項(xiàng)不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個(gè)充分不必要條件即為集合的真子集,由選擇項(xiàng)可知C符合題意.故選:C12、D【解析】根據(jù)復(fù)數(shù)在復(fù)平面內(nèi)的坐標(biāo)表示可得答案.【詳解】解:由題意得:在復(fù)平面上對(duì)應(yīng)的點(diǎn)為,該點(diǎn)在第四象限.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù)等比數(shù)列的通項(xiàng)公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:314、-1或-2【解析】由題可得,即求.【詳解】依題意,,解得或.故答案為:或.15、【解析】討論和兩種情況,進(jìn)而利用求得答案.【詳解】由題意,時(shí),,時(shí),,則,于是,故答案為:16、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運(yùn)算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點(diǎn)睛】本題考查了圓錐的體積公式,重點(diǎn)考查了勾股定理,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點(diǎn)法去絕對(duì)值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點(diǎn):1絕對(duì)值不等式;2恒成立問題;3轉(zhuǎn)化思想18、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)(ⅰ)設(shè)直線的方程為:,,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理、弦長(zhǎng)公式可求面積表達(dá)式,利用基本不等式可求面積的最大值.(ⅱ)利用韋達(dá)定理化簡(jiǎn)可得,從而可得的軌跡為圓,故可證存在定點(diǎn),使得為定值.【詳解】(1)由題意知:,,又,則以為圓心且過的圓的半徑為,故,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)(?。┰O(shè)直線的方程為:,將代入得:,所以且,故.又,點(diǎn)到直線的距離,所以,等號(hào)當(dāng)僅當(dāng)時(shí)取,即當(dāng)時(shí),的面積取最大值為.(ⅱ)顯然直線的斜率一定存在,設(shè)直線的方程為:,,由(?。┲核?,所以,解得,,直線過定點(diǎn)或,所以D在以O(shè)Z為直徑的圓上,該圓的圓心為或,半徑等于,所以存在定點(diǎn)或,使得為定值.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問題.19、(1);(2)①或;②過定點(diǎn)、,理由見解析.【解析】(1)由焦點(diǎn)三角形的周長(zhǎng)、離心率求橢圓參數(shù),即可得橢圓方程.(2)①由(1)可得,結(jié)合橢圓的定義求,即可確定的坐標(biāo);②由題設(shè),求直線、的方程,進(jìn)而求、坐標(biāo),即可得為直徑的圓的方程,令求橫坐標(biāo),即可得定點(diǎn).【小問1詳解】由題設(shè),易知:,可得,則,∴橢圓.【小問2詳解】①由(1)知:,令,則,∴,解得,故,此時(shí)或②由(1),,,∴可令直線:,直線:,∴將代入直線可得:,,則圓心且半徑為,∴為直徑的圓為,當(dāng)時(shí),,又,∴,可得或.∴為直徑的圓過定點(diǎn)、.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,應(yīng)用點(diǎn)斜式寫出直線、的方程,再求、坐標(biāo),根據(jù)定義求為直徑的圓的方程,最后令及在橢圓上求定點(diǎn).20、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點(diǎn)的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據(jù)圓心與弦中點(diǎn)的連線垂直線,可求出直線的斜率,進(jìn)而求出結(jié)果.【小問1詳解】解:由題意知圓心的坐標(biāo)為,半徑,當(dāng)過點(diǎn)的直線的斜率不存在時(shí),方程為由圓心到直線的距離知,此時(shí),直線與圓相切當(dāng)過點(diǎn)的直線的斜率存在時(shí),設(shè)方程為,即.由題意知,解得,∴方程為故過點(diǎn)的圓的切線方程為或【小問2詳解】解:∵圓心,,即,又,∴,則.21、(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),談?wù)搮?shù)的范圍,根據(jù)導(dǎo)數(shù)的正負(fù),可得單調(diào)區(qū)間;(2)由已知可解得,構(gòu)造函數(shù),再根據(jù)(1)的結(jié)論,可知函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理,可證明結(jié)論.【小問1詳解】定義域?yàn)椋驗(yàn)?,若,,所以單調(diào)遞減區(qū)間為,若,,當(dāng)時(shí),,當(dāng)時(shí),,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】證明:若且對(duì)任意,都有,則在處取得最小值,由(1)得在取得最小值,得,令

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論