版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省如東中學(xué)、栟茶中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線l:的傾斜角為()A. B.C. D.2.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?33.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.4.已知函數(shù),則()A.0 B.1C.2 D.5.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.46.等差數(shù)列中,已知,則()A.36 B.27C.18 D.97.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個(gè)時(shí)刻測得水面寬,則此時(shí)刻拱橋的最高點(diǎn)到水面的距離為()A. B.C. D.8.已知直線與橢圓:()相交于,兩點(diǎn),且線段的中點(diǎn)在直線:上,則橢圓的離心率為()A. B.C. D.9.已知橢圓的左焦點(diǎn)是,右焦點(diǎn)是,點(diǎn)P在橢圓上,如果線段的中點(diǎn)在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:310.設(shè)雙曲線:(,)的右頂點(diǎn)為,右焦點(diǎn)為,為雙曲線在第二象限上的點(diǎn),直線交雙曲線于另一個(gè)點(diǎn)(為坐標(biāo)原點(diǎn)),若直線平分線段,則雙曲線的離心率為()A. B.C. D.11.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關(guān)聯(lián),蘊(yùn)含著中華文化的豐富內(nèi)涵.在某次國際圍棋比賽中,規(guī)定甲與乙對(duì)陣,丙與丁對(duì)陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.3612.直線且的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知偶函數(shù)部分圖象如圖所示,且,則不等式的解集為______.14.展開式中的系數(shù)是___________.15.求值______.16.若橢圓和圓(c為橢圓的半焦距)有四個(gè)不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點(diǎn)為,雙曲線C的左、右頂點(diǎn)分別為A,B(1)求雙曲線C的方程;(2)過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn)(點(diǎn)P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值18.(12分)已知各項(xiàng)均為正數(shù)的等比數(shù)列前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求19.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓C:的焦距為4,且過點(diǎn).(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心(高的交點(diǎn)),若存在,求出直線l的方程:若不存在,請(qǐng)說明理由.20.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.21.(12分)已知?jiǎng)訄A過點(diǎn),且與直線:相切(1)求動(dòng)圓圓心的軌跡方程;(2)若過點(diǎn)且斜率的直線與圓心的軌跡交于兩點(diǎn),求線段的長度22.(10分)2021年7月25日,在東京奧運(yùn)會(huì)自行車公路賽中,奧地利數(shù)學(xué)女博士安娜·基秣崔天以3小時(shí)52分45秒的成績獲得冠軍,震驚了世界!廣大網(wǎng)友驚呼“學(xué)好數(shù)理化,走遍天下都不怕”.某市對(duì)中學(xué)生的體能測試成績與數(shù)學(xué)測試成績進(jìn)行分析,并從中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):體能一般體能優(yōu)秀合計(jì)數(shù)學(xué)一般5050100數(shù)學(xué)優(yōu)秀4060100合計(jì)90110200(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績有關(guān)?(結(jié)果精確到小數(shù)點(diǎn)后兩位)(2)①現(xiàn)從抽取的數(shù)學(xué)優(yōu)秀的人中,按“體能優(yōu)秀”與“體能一般”這兩類進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人,求其中至少有2人是“體能優(yōu)秀”的概率;②將頻率視為概率,以樣本估計(jì)總體,從該市中學(xué)生中隨機(jī)抽取10人參加座談會(huì),記其中“體能優(yōu)秀”的人數(shù)為X,求X的數(shù)學(xué)期望和方差參考公式:,其中參考數(shù)據(jù):0.150.100.050.250.0102.0722.7063.8415.0246.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.2、B【解析】先畫出可行域,由,得,作出直線,過點(diǎn)時(shí),取得最大值,求出點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點(diǎn)時(shí),取得最大值,由,得,即,所以的最大值為,故選:B3、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點(diǎn),從而求出函數(shù)的極大值;【詳解】解:因?yàn)?,所以,依題意可得,即,解得,所以定義域?yàn)?,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B4、C【解析】對(duì)函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點(diǎn)睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.5、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因?yàn)?,所以,所?故選:C6、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B7、D【解析】代入計(jì)算即可.【詳解】設(shè)B點(diǎn)的坐標(biāo)為,由拋物線方程得,則此時(shí)刻拱橋的最高點(diǎn)到水面的距離為2米.故選:D8、A【解析】將直線代入橢圓方程整理得關(guān)于的方程,運(yùn)用韋達(dá)定理,求出中點(diǎn)坐標(biāo),再由條件得到,再由,,的關(guān)系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設(shè),,,,則,即中點(diǎn)的橫坐標(biāo)是,縱坐標(biāo)是,由于線段的中點(diǎn)在直線上,則,又,則,,即橢圓的離心率為.故選:A9、A【解析】求出橢圓的焦點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上,線段的中點(diǎn)在軸上,求得點(diǎn)坐標(biāo),進(jìn)而計(jì)算,從而求解.【詳解】由橢圓方程可得:,設(shè)點(diǎn)坐標(biāo)為,線段的中點(diǎn)為,因?yàn)榫€段中點(diǎn)在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.10、A【解析】由給定條件寫出點(diǎn)A,F(xiàn)坐標(biāo),設(shè)出點(diǎn)B的坐標(biāo),求出線段FC的中點(diǎn)坐標(biāo),由三點(diǎn)共線列式計(jì)算即得.【詳解】令雙曲線的半焦距為c,點(diǎn),設(shè),由雙曲線對(duì)稱性得,線段FC的中點(diǎn),因直線平分線段,即點(diǎn)D,A,B共線,于是有,即,即,離心率.故選:A11、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【詳解】甲最終獲得冠軍的概率,故選:B.12、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由函數(shù)的圖象得出當(dāng)時(shí),,再由函數(shù)是偶函數(shù),其圖象的性質(zhì),即可得出答案.【詳解】是偶函數(shù),且,所以,由圖象得當(dāng)時(shí),.又函數(shù)是偶函數(shù),其圖像關(guān)于y軸對(duì)稱,當(dāng)時(shí),,所以不等式的解集為.故答案為:.14、【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式,可知展開式中含的項(xiàng),以及展開式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開式中含的項(xiàng)為,而展開式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.15、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:16、【解析】當(dāng)圓的直徑介于橢圓長軸和短軸長度范圍之間時(shí),橢圓和圓有四個(gè)不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個(gè)焦點(diǎn),故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點(diǎn)睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達(dá)定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設(shè)直線,,,由,得,則,,∴,,;當(dāng)直線的斜率不存在時(shí),,此時(shí).綜上,為定值證法二:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,∴,,由雙曲線方程可得,,則,所以,,,∴為定值18、(1)(2)9【解析】(1)根據(jù)題意列出關(guān)于等比數(shù)列首項(xiàng)、公比的方程組即可解決;(2)利用等比數(shù)列的前項(xiàng)和的公式,解方程即可解決.【小問1詳解】設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列首項(xiàng)為,公比為則有,解之得則等比數(shù)列的通項(xiàng)公式.【小問2詳解】由,可得19、(1)(2)存在:【解析】(1)根據(jù)題意,列出關(guān)于a,b,c的關(guān)系,計(jì)算求值,即可得答案.(2)由(1)可得B、F點(diǎn)坐標(biāo),可得直線BF的斜率,根據(jù)F為垂心,可得,可得直線l的斜率,設(shè)出直線l的方程,與橢圓聯(lián)立,根據(jù)韋達(dá)定理,結(jié)合垂心的性質(zhì),列式求解,即可得答案.【小問1詳解】因?yàn)榻咕酁?,所以,即,又過點(diǎn),所以,又,聯(lián)立求得,所以橢圓C的方程為【小問2詳解】由(1)可得,所以,因?yàn)镕為垂心,直線BF與直線l垂直,所以,則,即直線l的斜率為1,設(shè)直線l的方程為,,與橢圓聯(lián)立得,,所以,因?yàn)镕為垂心,所以直線BN與直線MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又時(shí),直線l過點(diǎn)B,不符合題意,所以,所以存在直線l:,滿足題意.20、(1);(2)證明見解析.【解析】(1)根據(jù)等差數(shù)列的性質(zhì)及題干條件,可求得,代入公式,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用裂項(xiàng)相消求和法,即可求得,即可得證.【詳解】解:(1)設(shè)數(shù)列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數(shù)列的通項(xiàng)公式為:.(2)由(1)可得,所以,故,所以.因?yàn)?,所?【點(diǎn)睛】數(shù)列求和的常見方法:(1)倒序相加法:如果一個(gè)數(shù)列的前n項(xiàng)中首末兩端等距離的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和可以用倒序相加法;(2)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前n項(xiàng)和可以用錯(cuò)位相減法來求;(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí),中間的一些項(xiàng)可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時(shí)可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和可以兩兩結(jié)合求解,則稱之為并項(xiàng)求和,形如類型,可采用兩項(xiàng)合并求解.21、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯(lián)立方程組,求出弦長.【詳解】解:(1)圓過點(diǎn),且與直線相切點(diǎn)到直線的距離等于由拋物線定義可知點(diǎn)的軌跡是以為焦點(diǎn)、以為準(zhǔn)線的拋物線,依題意,設(shè)點(diǎn)的軌跡方程為,則,解得,所以,動(dòng)圓圓心的軌跡方程是(2)依題意可知直線,設(shè)聯(lián)立,得,則,所以,線段的長度為【點(diǎn)睛】(1)待定系數(shù)法、代入法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)“設(shè)而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.22、(1)不能,理由見解析;(2)①,②,【解析】(1)運(yùn)用公式求出,比較得出結(jié)論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- WPS 辦公應(yīng)用-教學(xué)大綱、授課計(jì)劃
- 2024年汽車熱交換器項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 有關(guān)追夢(mèng)演講稿(17篇)
- 文明禮儀伴我行演講稿400(34篇)
- 學(xué)校表彰大會(huì)校長致辭
- 河西走廊觀后感600字范文(6篇)
- 珍惜糧食學(xué)生個(gè)人倡議書
- 理療師勞務(wù)合同范本
- 疫情期間幼兒工作總結(jié)5篇
- 新教材高考地理二輪專題復(fù)習(xí)單元綜合提升練3地球上的水含答案
- 培訓(xùn)需求調(diào)研問卷
- (管理制度)某酒業(yè)公司經(jīng)銷商管理制度
- 2023-2024年高二年級(jí)上學(xué)期期中試題:文言文閱讀(解析版)
- 江蘇省揚(yáng)州市2022-2023學(xué)年高一上學(xué)期數(shù)學(xué)期中考試試卷(含答案)
- 【六年級(jí)】上冊(cè)道德與法治-(核心素養(yǎng)目標(biāo))9.1 知法守法 依法維權(quán) 第一課時(shí) 教案設(shè)計(jì)
- 學(xué)習(xí)解讀2024年《關(guān)于深化產(chǎn)業(yè)工人隊(duì)伍建設(shè)改革的意見》課件
- 2024年中國汽車基礎(chǔ)軟件發(fā)展白皮書5.0-AUTOSEMO
- 車站調(diào)度員(高級(jí))技能鑒定理論考試題及答案
- 期中綜合測試(試題)-2024-2025學(xué)年語文三年級(jí)上冊(cè)統(tǒng)編版
- 河北省衡水市棗強(qiáng)縣2024-2025學(xué)年九年級(jí)上學(xué)期10月月考化學(xué)試題
- 航空危險(xiǎn)品運(yùn)輸練習(xí)題練習(xí)試題及答案
評(píng)論
0/150
提交評(píng)論