版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆大理市重點中學(xué)中考沖刺卷數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當(dāng)小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當(dāng)小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標(biāo)是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)2.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標(biāo)為()A.(0,1) B.(0,2) C. D.(0,3)3.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°4.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.5.如圖,有一塊含有30°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠2=44°,那么∠1的度數(shù)是()A.14°B.15°C.16°D.17°6.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入7.如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點的對應(yīng)點A′的坐標(biāo)為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)8.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內(nèi)角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形9.﹣2018的相反數(shù)是()A.﹣2018 B.2018 C.±2018 D.﹣10.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.12.若a+b=3,ab=2,則a2+b2=_____.13.不等式組的解集為________.14.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.15.若關(guān)于x的方程x2+x﹣a+=0有兩個不相等的實數(shù)根,則滿足條件的最小整數(shù)a的值是()A.﹣1 B.0 C.1 D.216.如圖是我區(qū)某一天內(nèi)的氣溫變化圖,結(jié)合該圖給出的信息寫出一個正確的結(jié)論:________.17.化簡的結(jié)果為_____.三、解答題(共7小題,滿分69分)18.(10分)為響應(yīng)國家“厲行節(jié)約,反對浪費”的號召,某班一課外活動小組成員在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生,針對“你每天是否會節(jié)約糧食”這個問題進(jìn)行了調(diào)查,并將調(diào)查結(jié)果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統(tǒng)計圖(如圖)(1)這次被抽查的學(xué)生共有______人,扇形統(tǒng)計圖中,“A組”所對應(yīng)的圓心度數(shù)為______;(2)補(bǔ)全兩個統(tǒng)計圖;(3)如果該校學(xué)生共有2000人,請估計“每天都會節(jié)約糧食”的學(xué)生人數(shù);(4)若不節(jié)約零食造成的浪費,按平均每人每天浪費5角錢計算,小江認(rèn)為,該校學(xué)生一年(365天)共將浪費:2000×20%×0.5×365=73000(元),你認(rèn)為這種說法正確嗎?并說明理由.19.(5分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標(biāo);(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點D的坐標(biāo).20.(8分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.21.(10分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積22.(10分)廬陽春風(fēng)體育運動品商店從廠家購進(jìn)甲,乙兩種T恤共400件,其每件的售價與進(jìn)貨量(件)之間的關(guān)系及成本如下表所示:T恤每件的售價/元每件的成本/元甲50乙60(1)當(dāng)甲種T恤進(jìn)貨250件時,求兩種T恤全部售完的利潤是多少元;若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進(jìn)貨量(件)之間的函數(shù)關(guān)系式;在(2)的條件下,已知兩種T恤進(jìn)貨量都不低于100件,且所進(jìn)的T恤全部售完,該商店如何安排進(jìn)貨才能使獲得的利潤最大?23.(12分)下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據(jù))∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據(jù))∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據(jù))24.(14分)“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.求與之間的函數(shù)關(guān)系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】
先根據(jù)反射角等于入射角先找出前幾個點,直至出現(xiàn)規(guī)律,然后再根據(jù)規(guī)律進(jìn)行求解.【題目詳解】由分析可得p(0,1)、、、、、、等,故該坐標(biāo)的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標(biāo)為(4,1).【題目點撥】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關(guān)鍵.2、B【解題分析】
根據(jù)方程組求出點A坐標(biāo),設(shè)C(0,m),根據(jù)AC=BC,列出方程即可解決問題.【題目詳解】由,解得或,
∴A(2,1),B(1,0),
設(shè)C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案為(0,2).【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點坐標(biāo)問題、勾股定理、方程組等知識,解題的關(guān)鍵是會利用方程組確定兩個函數(shù)的交點坐標(biāo),學(xué)會用方程的思想思考問題.3、B【解題分析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.4、C【解題分析】
根據(jù)主視圖的定義判斷即可.【題目詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【題目點撥】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關(guān)鍵.5、C【解題分析】
依據(jù)∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據(jù)BE∥CD,即可得出∠1=∠EBC=16°.【題目詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【題目點撥】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.6、C【解題分析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【題目點撥】本題主要考查扇形統(tǒng)計圖,解題的關(guān)鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.7、D【解題分析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標(biāo)為(1,0),∴A點的坐標(biāo)為(4,).∵BD=1,∴BD1=1,∴D1坐標(biāo)為(﹣2,0),∴A1坐標(biāo)為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標(biāo)為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì),作出圖形利用旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)是解答此題的關(guān)鍵.8、C【解題分析】
根據(jù)平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進(jìn)行判斷即可【題目詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內(nèi)角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【題目點撥】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關(guān)鍵9、B【解題分析】分析:只有符號不同的兩個數(shù)叫做互為相反數(shù).詳解:-1的相反數(shù)是1.故選:B.點睛:本題主要考查的是相反數(shù)的定義,掌握相反數(shù)的定義是解題的關(guān)鍵.10、D【解題分析】
當(dāng)k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【題目詳解】解:∵當(dāng)k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【題目點撥】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì).關(guān)鍵是明確系數(shù)與圖象的位置的聯(lián)系.二、填空題(共7小題,每小題3分,滿分21分)11、(y﹣1)1(x﹣1)1.【解題分析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個式子看做一個整體,利用上述方法因式分解的能力.12、1【解題分析】
根據(jù)a2+b2=(a+b)2-2ab,代入計算即可.【題目詳解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案為:1.【題目點撥】本題考查對完全平方公式的變形應(yīng)用能力,要熟記有關(guān)完全平方的幾個變形公式.13、x>1【解題分析】
分別求出兩個不等式的解集,再求其公共解集.【題目詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【題目點撥】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.14、【解題分析】
要求絲線的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,根據(jù)勾股定理計算即可.【題目詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.
∵圓柱底面的周長為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長最小為2AC=4dm.
故答案為:4dm【題目點撥】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.15、D【解題分析】
根據(jù)根的判別式得到關(guān)于a的方程,求解后可得到答案.【題目詳解】關(guān)于x的方程有兩個不相等的實數(shù)根,則解得:滿足條件的最小整數(shù)的值為2.故選D.【題目點撥】本題考查了一元二次方程根與系數(shù)的關(guān)系,理解并能運用根的判別式得出方程是解題關(guān)鍵.16、這一天的最高氣溫約是26°【解題分析】
根據(jù)我區(qū)某一天內(nèi)的氣溫變化圖,分析變化趨勢和具體數(shù)值,即可求出答案.【題目詳解】解:根據(jù)圖象可得這一天的最高氣溫約是26°,故答案為:這一天的最高氣溫約是26°.【題目點撥】本題考查的是函數(shù)圖象問題,統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.17、+1【解題分析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【題目詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【題目點撥】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.三、解答題(共7小題,滿分69分)18、(1)50,108°(2)見解析;(3)600人;(4)不正確,見解析.【解題分析】
(1)由C組人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以A組人數(shù)所占比例可得;(2)根據(jù)百分比之和為1求得A組百分比補(bǔ)全圖1,總?cè)藬?shù)乘以B的百分比求得其人數(shù)即可補(bǔ)全圖2;(3)總?cè)藬?shù)乘以樣本中A所占百分比可得;(4)由樣本中浪費糧食的人數(shù)所占比例不是20%即可作出判斷.【題目詳解】(1)這次被抽查的學(xué)生共有25÷50%=50人,扇形統(tǒng)計圖中,“A組”所對應(yīng)的圓心度數(shù)為360°×=108°,故答案為50、108°;(2)圖1中A對應(yīng)的百分比為1-20%-50%=30%,圖2中B類別人數(shù)為50×20%=5,補(bǔ)全圖形如下:(3)估計“每天都會節(jié)約糧食”的學(xué)生人數(shù)為2000×30%=600人;(4)不正確,因為在樣本中浪費糧食的人數(shù)所占比例不是20%,所以這種說法不正確.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。瑫r本題還考查了通過樣本來估計總體.19、(1)y=﹣x2﹣x+3;(2)點P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【解題分析】
(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點A、C的坐標(biāo),由點B所在的位置結(jié)合點B的橫坐標(biāo)可得出點B的坐標(biāo),根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點P的坐標(biāo);(3)連接AC交OD于點F,由點到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點D的坐標(biāo)即可得出結(jié)論.【題目詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標(biāo)為(﹣4,0),點C的坐標(biāo)為(0,3).∵點B在x軸上,點B的橫坐標(biāo)為,∴點B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設(shè)點D的坐標(biāo)為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時,點D的坐標(biāo)為(,).【題目點撥】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點D的坐標(biāo)為(﹣3t,4t).20、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解題分析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【題目詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【題目點撥】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識,難度適中.21、(1)證明見解析;(2).【解題分析】
(1)先根據(jù)直角三角形斜邊上中線的性質(zhì),得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進(jìn)而判定四邊形AEDF是菱形;
(2)根據(jù)等邊三角形的性質(zhì)得出EF=5,AD=5,進(jìn)而得到菱形AEDF的面積S.【題目詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點E、F分別是AB、AC的中點,
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)如圖,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面積S=EF?AD=×5×5=.【題目點撥】本題考查菱形的判定與性質(zhì)的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.22、(1)10750;(2);(3)最大利潤為10750元.【解題分析】
(1)根據(jù)“利潤=銷售總額-總成本”結(jié)合兩種T恤的銷售數(shù)量代入相關(guān)代數(shù)式進(jìn)行求解即可;(2)根據(jù)題意,分兩種情況進(jìn)行討論:①0<m<200;②200≤m≤400時,根據(jù)“利潤=銷售總額-總成本”即可求得各相關(guān)函數(shù)關(guān)系式;(3)求出(2)中各函數(shù)最大值,進(jìn)行比較即可得到結(jié)論.【題目詳解】(1)∵甲種T恤進(jìn)貨250件∴乙種T恤進(jìn)貨量為:400-250=150件故由題意得,;(2)①②;故.(3)由題意,,①,,②,綜上,最大利潤為10750元.【題目點撥】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年泮托拉唑鈉項目投資可行性研究分析報告
- 保安個人合同范例
- 農(nóng)村因修路占地合同范例
- 冷撥鋼筋項目可行性研究報告
- 醫(yī)用簾合同范例
- 臨床路徑管理規(guī)范
- 內(nèi)褲供應(yīng)合同范例
- 買平房合同范本
- 2025年度特種貨物運輸合同
- 專利許可合同范例 baidu
- 醫(yī)美注射類知識培訓(xùn)課件
- 2025年廣電網(wǎng)絡(luò)公司工作計劃(3篇)
- 貨運車輛駕駛員服務(wù)標(biāo)準(zhǔn)化培訓(xùn)考核試卷
- 銀行行長2024年個人年終總結(jié)
- 財務(wù)BP經(jīng)營分析報告
- 《磺化過程》課件
- 設(shè)備基礎(chǔ)預(yù)埋件施工方案
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 2022屆“一本、二本臨界生”動員大會(2023.5)
評論
0/150
提交評論