版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
龍華區(qū)2022-2023學(xué)年第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試卷高一數(shù)學(xué)說明:1.本試卷共4頁,22小題,滿分150分.考試用時120分鐘.2.答卷前,考生務(wù)必將自己的條形碼貼在答題卡上.3.作答選擇題時,選出每小題答案后,用2B鉛筆在答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮檫干凈后,再選涂其他答案.4.非選擇題的答案必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目的指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液.不按以上要求作答無效.一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)補集和并集的定義運算即得.【詳解】SKIPIF1<0全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0因此,SKIPIF1<0.故選:D.2.在半徑為SKIPIF1<0的圓中,弧長為SKIPIF1<0的弧所對的圓心角為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)弧長公式,結(jié)合弧度制與角度制互化公式進(jìn)行求解即可.【詳解】弧長為SKIPIF1<0的弧所對的圓心角為SKIPIF1<0,故選:B3.下列條件中,使SKIPIF1<0成立的充要條件是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)不等式的關(guān)系,結(jié)合充分條件和必要條件的定義及指數(shù)函數(shù)的性質(zhì)逐項分析即得.【詳解】對A,取SKIPIF1<0,則SKIPIF1<0,錯誤;對B,取SKIPIF1<0,則SKIPIF1<0,錯誤;對C,SKIPIF1<0,正確;對D,取SKIPIF1<0,則SKIPIF1<0無意義,錯誤.故選:C.4.下列是奇函數(shù),且在區(qū)間SKIPIF1<0上單調(diào)遞增的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)函數(shù)的單調(diào)性和奇偶性對各個選項逐一分析即可.【詳解】對A,函數(shù)SKIPIF1<0是奇函數(shù),在SKIPIF1<0上單調(diào)遞減,故錯誤;對B,函數(shù)SKIPIF1<0是非奇非偶函數(shù),故錯誤;對C,函數(shù)SKIPIF1<0是非奇非偶函數(shù),故錯誤;對D,函數(shù)SKIPIF1<0是奇函數(shù),在SKIPIF1<0上單調(diào)遞增,故正確.故選:D5.神舟十五號載人飛船于2022年11月30日到達(dá)中國空間站,并成功對接,完成了中國空間站的最后一塊拼圖.已知中國空間站離地球表面的高度約為SKIPIF1<0千米,每SKIPIF1<0分鐘繞地球一圈.若將其運行軌道近似地看成圓形,運行軌道所在平面與地球的截面也近似地看成直徑約為SKIPIF1<0千米的圓形,則中國空間站在軌道中運行的速度約為(SKIPIF1<0)()A.SKIPIF1<0千米/秒B.SKIPIF1<0千米/秒C.SKIPIF1<0千米/秒D.SKIPIF1<0千米/秒【答案】A【解析】【分析】求出半徑,再根據(jù)圓的周長公式求出運行的長度,除以時間即可得到速度.【詳解】根據(jù)直徑為SKIPIF1<0千米,則半徑為6210千米,則運行速度SKIPIF1<0千米/秒.故選:A.6.已知SKIPIF1<0,則SKIPIF1<0的化簡結(jié)果是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】利用誘導(dǎo)公式及平方關(guān)系化簡即可.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A7.已知SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)對數(shù)的運算和對數(shù)函數(shù)的單調(diào)性進(jìn)行判斷即可.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為函數(shù)SKIPIF1<0是正實數(shù)集上的增函數(shù),所以有SKIPIF1<0故選:C8.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的零點所在的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)零點存在定理,只需判斷兩個端點的函數(shù)值,即兩個端點函數(shù)值異號即可.【詳解】由已知得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由零點的存在定理得,SKIPIF1<0的零點所在的區(qū)間為SKIPIF1<0,故選:D.二、多項選擇題:本題共4小題,每小題5分,共20分.在每小題給出的四個選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.下列是函數(shù)圖象的是()A. B.C. D.【答案】ABD【解析】【分析】根據(jù)函數(shù)的定義,進(jìn)行分析判斷即可得解..【詳解】根據(jù)函數(shù)的定義可知,定義域內(nèi)的每一個SKIPIF1<0只有一個SKIPIF1<0和它對應(yīng),因此不能出現(xiàn)一對多的情況,所以C不是函數(shù)圖象,ABD是函數(shù)圖象.故選:ABD.10.下列函數(shù)中,最小正周期是SKIPIF1<0,且在區(qū)間SKIPIF1<0上單調(diào)遞增的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【解析】【分析】根據(jù)已知條件結(jié)合選項逐項驗證,可得答案.【詳解】A,SKIPIF1<0,最小正周期為SKIPIF1<0,在區(qū)間SKIPIF1<0上單調(diào)遞增,故A正確;B,SKIPIF1<0,最小正周期為SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞增,故B正確;C,SKIPIF1<0,最小正周期為SKIPIF1<0,且在SKIPIF1<0上不具有單調(diào)性,故C錯誤;D,SKIPIF1<0,最小正周期為SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞減,故D錯誤.故選:AB.11.已知函數(shù)SKIPIF1<0,下列說法正確是()A.SKIPIF1<0的定義域是SKIPIF1<0 B.SKIPIF1<0的圖象關(guān)于原點對稱C.SKIPIF1<0 D.當(dāng)SKIPIF1<0時,SKIPIF1<0最小值為SKIPIF1<0【答案】BC【解析】【分析】由函數(shù)解析式,根據(jù)奇偶性的定義,可得A、B的正誤;根據(jù)函數(shù)解析式可得函數(shù)值可得C的正誤;根據(jù)余弦函數(shù)的性質(zhì),可得D的正誤.【詳解】對A,由函數(shù)SKIPIF1<0,其定義域為SKIPIF1<0,故A錯誤;對B,SKIPIF1<0,故函數(shù)SKIPIF1<0為奇函數(shù),故B正確;對C,因為SKIPIF1<0,故C正確;對D,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故D錯誤.故選:BC.12.已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若對SKIPIF1<0,均有SKIPIF1<0,則稱函數(shù)SKIPIF1<0具有“倒負(fù)”變換性質(zhì).下列具有“倒負(fù)”變換性質(zhì)的函數(shù)是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】【分析】根據(jù)題中定義,結(jié)合分類討論思想逐一判斷即可.【詳解】A:SKIPIF1<0,因此本函數(shù)不具有“倒負(fù)”變換性質(zhì);B:SKIPIF1<0,因此本函數(shù)具有“倒負(fù)”變換性質(zhì);C:當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因此本函數(shù)具有“倒負(fù)”變換性質(zhì);D:當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因此本函數(shù)具有“倒負(fù)”變換性質(zhì),故選:BCD【點睛】關(guān)鍵點睛:利用代入法,結(jié)合分段函數(shù)的解析式進(jìn)行分類討論是解題的關(guān)鍵.三、填空題:本大題共4小題,每小題5分,共20分.13.函數(shù)SKIPIF1<0的定義域是___________.【答案】SKIPIF1<0且SKIPIF1<0【解析】【分析】根據(jù)真數(shù)大于0,分母不為0,即可求得答案.【詳解】由題意得SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,所以定義域為:SKIPIF1<0且SKIPIF1<0故答案為:SKIPIF1<0且SKIPIF1<014.化簡SKIPIF1<0的值為___________.【答案】SKIPIF1<0【解析】【分析】根據(jù)指數(shù)冪的運算律運算即得.【詳解】SKIPIF1<0,故答案為:SKIPIF1<0.15.已知S市某所新建高中SKIPIF1<0年的綠化面積為SKIPIF1<0,若該校綠化面積的年平均增長率為SKIPIF1<0%,則到_______年(用整數(shù)年份表示),該校的綠化面積約是SKIPIF1<0.(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0)【答案】SKIPIF1<0【解析】【分析】設(shè)經(jīng)過n年后,該校的綠化面積約是SKIPIF1<0,由已知可得n的關(guān)系式,再通過兩邊取對數(shù),利用對數(shù)運算求解即可.【詳解】設(shè)經(jīng)過n年后,該校的綠化面積約是SKIPIF1<0,則由已知得SKIPIF1<0,即SKIPIF1<0,兩邊取對數(shù)得SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0.16.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0____________.【答案】SKIPIF1<0【解析】【分析】根據(jù)誘導(dǎo)公式結(jié)合條件即得.【詳解】因為SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.17.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的值;(2)若SKIPIF1<0,求實數(shù)SKIPIF1<0的值.【答案】(1)4;(2)SKIPIF1<0或SKIPIF1<0.【解析】【分析】(1)將SKIPIF1<0代入SKIPIF1<0求解;(2)根據(jù)SKIPIF1<0,求解即得.【小問1詳解】∵函數(shù)SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0;【小問2詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;所以SKIPIF1<0或SKIPIF1<0.18.如圖所示,在直角坐標(biāo)系內(nèi),銳角SKIPIF1<0的終邊與單位圓交于點SKIPIF1<0,將角SKIPIF1<0的終邊按逆時針方向旋轉(zhuǎn)SKIPIF1<0后得到角SKIPIF1<0的終邊,并與單位圓交于點SKIPIF1<0.(1)用含SKIPIF1<0的式子表示點SKIPIF1<0的坐標(biāo);(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【解析】【分析】(1)由三角函數(shù)定義,根據(jù)題中條件,即可用含SKIPIF1<0的式子表示點SKIPIF1<0的坐標(biāo);(2)法一:根據(jù)題中條件,由同角三角函數(shù)的平方關(guān)系和商數(shù)關(guān)系,聯(lián)立方程組求解即可;法二:根據(jù)題中條件,由同角三角函數(shù)基本關(guān)系可得,SKIPIF1<0①,SKIPIF1<0②,聯(lián)立方程組求解即可.【小問1詳解】依題意得:SKIPIF1<0,由三角函數(shù)定義知,SKIPIF1<0,SKIPIF1<0,所以點SKIPIF1<0的坐標(biāo)為SKIPIF1<0【小問2詳解】法一:因SKIPIF1<0,所以SKIPIF1<0①又因為SKIPIF1<0②,聯(lián)立①②解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.法二:因為SKIPIF1<0,所以SKIPIF1<0①兩邊平方得SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0②當(dāng)SKIPIF1<0時,解得SKIPIF1<0,此時SKIPIF1<0當(dāng)SKIPIF1<0時,解得SKIPIF1<0,此時SKIPIF1<0或SKIPIF1<0.19.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)遞增區(qū)間;(2)求SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值.【答案】(1)SKIPIF1<0(SKIPIF1<0)(2)SKIPIF1<0【解析】【分析】(1)利用整體代入法與余弦函數(shù)的性質(zhì)求解即可;(2)利用余弦函數(shù)的性質(zhì),結(jié)合整體法求解即可.【小問1詳解】設(shè)SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0,SKIPIF1<0,∴由SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,∴函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0(SKIPIF1<0).【小問2詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴由余弦函數(shù)SKIPIF1<0的性質(zhì),當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0,此時SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0.20.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)證明SKIPIF1<0是增函數(shù);(2)若不等式SKIPIF1<0對于SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)證明見解析(2)SKIPIF1<0【解析】【分析】(1)根據(jù)函數(shù)的單調(diào)性定義證明即可;(2)法一:利用函數(shù)的單調(diào)性,把問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,再求SKIPIF1<0在SKIPIF1<0上的最大值即可;法二:原不等式可轉(zhuǎn)化為SKIPIF1<0,再通過換元SKIPIF1<0轉(zhuǎn)化為二次不等式在給定區(qū)間的恒成立問題,利用二次函數(shù)性質(zhì)求解即可.【小問1詳解】證明:SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.因此,SKIPIF1<0是增函數(shù).【小問2詳解】法一:由(1)知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以不等式SKIPIF1<0可變?yōu)镾KIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,所以SKIPIF1<0,綜上所求得SKIPIF1<0的取值范圍是SKIPIF1<0.法二:由不等式SKIPIF1<0得SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以要使原不等式恒成立,則有SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<021.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,證明:SKIPIF1<0;(2)若SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0.(?。┣骃KIPIF1<0的解析式;(ⅱ)求方程SKIPIF1<0的所有根.【答案】(1)證明見解析(2)(?。㏒KIPIF1<0;(ⅱ)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【解析】【分析】(1)根據(jù)對數(shù)函數(shù)的性質(zhì),基本不等式結(jié)合條件即得;(2)根據(jù)奇函數(shù)的性質(zhì)可得函數(shù)的解析式,方程SKIPIF1<0轉(zhuǎn)化成曲線SKIPIF1<0與直線SKIPIF1<0的交點情況,結(jié)合函數(shù)的圖象和性質(zhì)即得.【小問1詳解】證明:因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由基本不等式,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0;【小問2詳解】(?。┮李}意得,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0是定義在SKIPIF1<0上奇函數(shù),所以SKIPIF1<0,代入上式成立,即當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;(ⅱ)方程SKIPIF1<0轉(zhuǎn)化成曲線SKIPIF1<0與直線SKIPIF1<0的交點情況,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0和點SKIPIF1<0,由(1)知SKIPIF1<0圖象總是向上凸的,所以除SKIPIF1<0外不會有其它交點,同理,當(dāng)SKIPIF1<0時,根據(jù)對稱性,兩個圖象還有一個交點SKIPIF1<0,所以方程SKIPIF1<0有三個根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.22.某地準(zhǔn)備在山谷中建一座橋梁,橋址位置的豎直截面圖如圖所示:谷底SKIPIF1<0在水平線SKIPIF1<0上,橋SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版三年級語文下冊全冊教案設(shè)計
- 組織部長在在全縣黨費收繳管理工作會議上的講話
- 原發(fā)性宮縮乏力的健康宣教
- 黑點癬的臨床護(hù)理
- 老年人梅尼埃病的健康宣教
- 加快打造具有南京特色的現(xiàn)代產(chǎn)業(yè)體系
- 孕期長痘的健康宣教
- 先天性后鼻孔閉鎖的健康宣教
- JJF(陜) 084-2022 生命體征模擬儀校準(zhǔn)規(guī)范
- JJF(陜) 037-2020 扭矩測量儀(靜態(tài))在線校準(zhǔn)規(guī)范
- 【課件】供應(yīng)商現(xiàn)場與質(zhì)量管理
- 2024年立式碾米機(jī)項目可行性研究報告
- 統(tǒng)編版語文九年級上冊(2024)(含答案)
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 成都錦城學(xué)院《算法分析與設(shè)計》2022-2023學(xué)年期末試卷
- 可行性報告編制服務(wù)方案
- 牛頓法在圖像處理中的應(yīng)用
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 《贏利》精讀圖解
- 2024年一級造價工程師考試《建設(shè)工程造價管理》真題及解析
- 2025屆江蘇揚州中學(xué)數(shù)學(xué)高一上期末考試試題含解析
評論
0/150
提交評論