北京市昌平區(qū)市級名校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題含解析_第1頁
北京市昌平區(qū)市級名校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題含解析_第2頁
北京市昌平區(qū)市級名校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題含解析_第3頁
北京市昌平區(qū)市級名校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題含解析_第4頁
北京市昌平區(qū)市級名校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

北京市昌平區(qū)市級名校2024屆數(shù)學(xué)高一第二學(xué)期期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值等于()A. B. C. D.2.在ΔABC中,若,則=()A.6 B.4 C.-6 D.-43.某中學(xué)舉行高一廣播體操比賽,共10個隊參賽,為了確定出場順序,學(xué)校制作了10個出場序號簽供大家抽簽,高一(l)班先抽,則他們抽到的出場序號小于4的概率為()A. B. C. D.4.已知,向量,則向量()A. B. C. D.5.在中,角A、B、C的對邊分別為a、b、c,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形6.把函數(shù)的圖像上所有的點向左平行移動個單位長度,再把所得圖像上所有點的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到的圖像所表示的函數(shù)是()A. B.C. D.7.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.8.在中,,則=()A. B. C. D.9.已知圓柱的軸截面為正方形,且該圓柱的側(cè)面積為,則該圓柱的體積為A. B. C. D.10.設(shè)不等式組所表示的平面區(qū)域為,在內(nèi)任取一點,的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的首項,其前項和為,且,若單調(diào)遞增,則的取值范圍是__________.12.已知向量,,若,則實數(shù)__________.13.關(guān)于的方程()的兩虛根為、,且,則實數(shù)的值是________.14.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.15.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.16.若,則=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知:(,為常數(shù)).(1)若,求的最小正周期;(2)若在,上最大值與最小值之和為3,求的值.18.在中,內(nèi)角,,所對的邊分別為,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.19.如圖,在△ABC中,AB=8,AC=3,∠BAC=60°,以點A為圓心,r=2為半徑作一個圓,設(shè)PQ為圓A的一條直徑.(1)請用表示,用表示;(2)記∠BAP=θ,求的最大值.20.在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.已知函數(shù)f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函數(shù)f(x)的值域及最小正周期;(2)如圖,在四邊形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面積S△ABC.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】,所以,則,故選擇D.2、C【解題分析】

向量的點乘,【題目詳解】,選C.【題目點撥】向量的點乘,需要注意后面乘的是兩向量的夾角的余弦值,本題如果直接計算的話,的夾角為∠BAC的補角3、D【解題分析】

古典概率公式得到答案.【題目詳解】抽到的出場序號小于4的概率:故答案選D【題目點撥】本題考查了概率的計算,屬于簡單題.4、A【解題分析】

由向量減法法則計算.【題目詳解】.故選A.【題目點撥】本題考查向量的減法法則,屬于基礎(chǔ)題.5、D【解題分析】

由正弦定理化簡,得到,由此得到三角形是等腰或直角三角形,得到答案.【題目詳解】由題意知,,結(jié)合正弦定理,化簡可得,所以,則,所以,得或,所以三角形是等腰或直角三角形.故選D.【題目點撥】本題考查了正弦定理和余弦定理在解三角形中的應(yīng)用.在解三角形問題中經(jīng)常把邊的問題轉(zhuǎn)化成角的正弦或余弦函數(shù),利用三角函數(shù)的關(guān)系來解決問題,屬于基礎(chǔ)題.6、C【解題分析】

根據(jù)左右平移和周期變換原則變換即可得到結(jié)果.【題目詳解】向左平移個單位得:將橫坐標(biāo)縮短為原來的得:本題正確選項:【題目點撥】本題考查三角函數(shù)的左右平移變換和周期變換的問題,屬于基礎(chǔ)題.7、C【解題分析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.8、C【解題分析】

解:因為由正弦定理,所以又c<a所以,所以9、C【解題分析】

設(shè)圓柱的底面半徑,該圓柱的高為,利用側(cè)面積得到半徑,再計算體積.【題目詳解】設(shè)圓柱的底面半徑.因為圓柱的軸截面為正方形,所以該圓柱的高為因為該圓柱的側(cè)面積為,所以,解得,故該圓柱的體積為.故答案選C【題目點撥】本題考查了圓柱的體積,意在考查學(xué)生的計算能力和空間想象能力.10、A【解題分析】作出約束條件所表示的平面區(qū)域,如圖所示,四邊形所示,作出直線,由幾何概型的概率計算公式知的概率,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由可得:兩式相減得:兩式相減可得:數(shù)列,,...是以為公差的等差數(shù)列,數(shù)列,,...是以為公差的等差數(shù)列將代入及可得:將代入可得要使得,恒成立只需要即可解得則的取值范圍是點睛:本題考查了數(shù)列的遞推關(guān)系求通項,在含有的條件中,利用來求通項,本題利用減法運算求出數(shù)列隔一項為等差數(shù)列,結(jié)合和數(shù)列為增數(shù)列求出結(jié)果,本題需要利用條件遞推,有一點難度.12、【解題分析】

根據(jù)平面向量時,列方程求出的值.【題目詳解】解:向量,,若,則,即,解得.故答案為:.【題目點撥】本題考查了平面向量的坐標(biāo)運算應(yīng)用問題,屬于基礎(chǔ)題.13、5【解題分析】

關(guān)于方程兩數(shù)根為與,由根與系數(shù)的關(guān)系得:,,由及與互為共軛復(fù)數(shù)可得答案.【題目詳解】解:與是方程的兩根由根與系數(shù)的關(guān)系得:,,由與為虛數(shù)根得:,,則,解得,經(jīng)驗證,符合要求,故答案為:.【題目點撥】本題考查根與系數(shù)的關(guān)系的應(yīng)用.求解是要注意與為虛數(shù)根情形,否則漏解,屬于基礎(chǔ)題.14、.【解題分析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.15、【解題分析】

通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【題目詳解】因為的面積為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【題目點撥】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯點注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.16、【解題分析】.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1【解題分析】

(1)利用二倍角和輔助角公式化簡,即可求出最小正周期;(2)根據(jù)在,上,求解內(nèi)層函數(shù)范圍,即可求解最值,由最大值與最小值之和為3,求的值.【題目詳解】解:,(1)的最小正周期;(2),,當(dāng)時,即,取得最小值為,當(dāng)時,即,取得最大值為,最大值與最小值之和為3,,,故的值為1.【題目點撥】本題主要考查三角函數(shù)的性質(zhì)和圖象的應(yīng)用,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ).【解題分析】

(Ⅰ)根據(jù)正弦定理將邊角轉(zhuǎn)化,結(jié)合三角函數(shù)性質(zhì)即可求得角.(Ⅱ)先根據(jù)余弦定理求得,再由正弦定理求得,利用同角三角函數(shù)關(guān)系式求得,即可求得.即可求得的值.【題目詳解】(Ⅰ)在中,由正弦定理可得即因為,所以,即又因為,可得(Ⅱ)在中,由余弦定理及,,有,故由正弦定理可得因為,故因此,所以,【題目點撥】本題考查了正弦定理與余弦定理在解三角形中的應(yīng)用,二倍角公式及正弦和角公式的用法,屬于基礎(chǔ)題.19、(1);(2)22.【解題分析】

利用向量的三角形法則即可求得答案由,,可得,利用向量的數(shù)量積的坐標(biāo)表示的表達(dá)式,利用三角函數(shù)知識可求最值【題目詳解】(1)=-.(2)∵∠BAC=60°,設(shè)∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴當(dāng)sin(θ+φ)=1時,的最大值為22.【題目點撥】本題主要考查了三角函數(shù)與平面向量的綜合,而輔助角公式是解決三角函數(shù)的最值的常用方法,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應(yīng)用.20、(1)(2)【解題分析】

(1)利用條件求數(shù)列的首項與公比,確定所求.(2)將分組,,再利用等比數(shù)列前n項和公式求和【題目詳解】解:(1)設(shè)等比數(shù)列的公比為,所以,由,所以,則;(2),所以數(shù)列的前項和,則數(shù)列的前項和.【題目點撥】本題考查等比數(shù)列的通項,分組求和法,考查計算能力,屬于中檔題.21、(1)值域為[﹣3,1],最小正周期為π;(2).【解題分析】

(1)化簡f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論