




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福毫南龍考極學(xué)考瑞爪枇被您
一、單選題
1.已知函數(shù)/(X)是定義在R上的周期為6的奇函數(shù),且滿足/(1)=1,/(2)=3,則
/(8)-/(5)=
A.-4B.-2C.2D.4
2.滿足{2018}cA<={2018,2019,2020}的集合A的個數(shù)為
A.1B.2C.3D.4
3.復(fù)數(shù)二二在復(fù)平面內(nèi)對應(yīng)的點位于
1-1
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
4.題目略長,不要彷徨,套路不深,何必當(dāng)真.荊州某公園舉辦水仙花展,有甲、乙、丙、
丁4名志愿者,隨機(jī)安排2人到A展區(qū),另2人到B展區(qū)維持秩序,則甲、乙兩人同時被
安排到A展區(qū)的概率為
1
A.B.c.D.
n2
5.已知等差數(shù)列{〃〃}的前〃項和為若§5=7,&=21,則$=
A.35B.42C.49D.63
%—y+220,
6.已知實數(shù)次,y滿足{x+2y-7W0,則2x+3y的最大值為()
二1,
A.1B.11C.13D.17
7.為了得到函數(shù)y=cos2?x-sin2x+l的圖象,只需將函數(shù)y=(sinx+cosx)2的圖象
7T
A.向右平移四個單位長度B.向右平移一個單位長度
24
7T7T
C.向左平移二個單位長度D.向左平移一個單位長度
24
8.執(zhí)行如圖所示的程序框圖,若輸入x=64,則輸出的結(jié)果為
9.如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗實線和粗虛線畫出了某幾何體的三視
圖,其中俯視圖中的曲線是四分之一的圓弧,則這個兒何體的體積可能是
c8
B.2萬+一
3
C.2萬+8D.8萬+8
10.函數(shù)y=ln^―^+sinx的圖象大致為
1+x
11.在直三棱柱ABC「ABC中,A4=3,4cl=4,4G=5,AA=2,則其外接
球與內(nèi)切球的表面積之比為
29R19
A.——B-TD.29
4
22
12.已知直線/:丘-〉-2左+1=0與橢圓G:三+表?=1(。>匕>0)交于4、B兩點,與圓
C2:(x—2)~+(>—1)~=1交于C、Q兩點.若存在々e[—2,—1],使得AC=£)B,則橢圓G
的離心率的取值范圍是()
二、填空題
13.已知向量商=(-1,3),5=(1,。,若他一25),乙,則向量力與向量5的夾角為.
14.已知雙曲線的漸近線方程為3x±4y=0,焦點坐標(biāo)為(±5,0),則雙曲線的方程為一.
15.已知函數(shù)/(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,/(X)=X3-2X2,曲線
>=/(x)在點(1,7(D)處的切線方程為.
16.分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,
但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即
一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的
長度為a,在線段A3上取兩個點C,。,使得AC=£)8=以C0為一邊在線段A3
4
的上方做一個正六邊形,然后去掉線段C。,得到圖2中的圖形;對圖2中的最上方的線段
作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第"個圖形(圖1為第1個圖形)中的所有線段長的和為S“,現(xiàn)給出有關(guān)數(shù)列{S,}的四
個命題:
①數(shù)列⑸}是等比數(shù)列;
②數(shù)列{S,,}是遞增數(shù)列;
③存在最小的正數(shù)4,使得對任意的正整數(shù)〃,都有5“>2018;
④存在最大的正數(shù)“,使得對任意的正整數(shù)〃,都有S“<2018.
其中真命題的序號是(請寫出所有真命題的序號).
三、解答題
17.在DABC中,C=60°,BC=2AC=26
(1)求證:DABC是直角三角形;
(2)若點。在8C邊上,且sin/8AO=2包,求CO.
7
18.如圖1所示,在梯形3CDE中,DE//BC,且。七=,6。,NC=90。,分別延長
2
兩腰交于點A,點尸為線段CO上的一點,將沿。E折起到△AOE的位置,使
A.FA.CD,如圖2所示.
(1)求證:A1F1.BE;
(2)若8C=6,AC=8,四棱錐4一BCOE的體積為126,求四棱錐A-BCDE的
表面枳.
19.某公司計劃購買1臺機(jī)器,且該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時,可以一次
性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支
付小費,小費每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時購買的維修服務(wù)次數(shù),
則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機(jī)器時應(yīng)同時一
次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機(jī)器在三年使用期間的維修次數(shù),得
如下統(tǒng)計表:
維修次數(shù)89101112
頻數(shù)1020303010
記x表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),)表示1臺機(jī)器在維修上所需的費用(單位:
元),”表示購機(jī)的同時購買的維修服務(wù)次數(shù).
(1)若〃=10,求y關(guān)于%的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于〃”的頻率不小于0.8,求”的最小值;
(3)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買10次維修服務(wù)或每臺都購買11次維修服
務(wù),分別計算這100臺機(jī)器在維修上所需費用的平均數(shù),以此作為決策依據(jù),判斷購買1
臺機(jī)器的同時應(yīng)購買10次還是11次維修服務(wù)?.
20.已知拋物線C:y2=2px(p>0),且。(4,0),N(〃,4)三點中恰有兩點
(4)
在拋物線C上,另一點是拋物線C的焦點.
(1)求證:。、M、N三點共線;
(2)若直線/過拋物線C的焦點且與拋物線C交于A、8兩點,點A到x軸的距離為4,
點B到y(tǒng)軸的距離為4,求4*+d;的最小值.
21.已知函數(shù)/1(x)=lnx+x2-av.
(1)若a>0,求函數(shù)/(x)的極值點;
(2)若函數(shù)/(X)有兩個極值點X1,x2,且為<々,
求證:1(%)一4/)之11112.
x=cos(p,
22.在直角坐標(biāo)系X。),下,曲線G的參數(shù)方程為《,(9為參數(shù)),曲線C,的
y=1+sin°,
x-tcosa,TI
參數(shù)方程為<(f為參數(shù),且f?0,Q<a<-),以坐標(biāo)原點。為極點,x軸
y=fsma,2
的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線a的極坐標(biāo)方程為0=2rcos6,常數(shù)r>0,曲線
C?與曲線G,G的異于。的交點分別為A,B.
(1)求曲線G和曲線G的極坐標(biāo)方程;
⑵若+臼的最大值為6,求/?的值.
23.設(shè)函數(shù)/(x)=|2x+l|+|x-a|(a>0).
(I)當(dāng)a=2時,求不等式/*)>8的解集;
3
(2)若HxeR,使得了COW]成立,求實數(shù)〃的取值范圍.
答案
1.D
2.C
3.A
【解析】
2-i(2-i)(l+i)3J
因為百
(l-i)(l+i)22
4.B
【詳解】
隨機(jī)安排2人到A展區(qū),另2人到3展區(qū)維持秩序,有C:種不同的方法
其中甲、乙兩人同時被安排到A展區(qū),有種不同的方法
則由古典概型的概率公式,
C21
得甲、乙兩人同時被安排到A展區(qū)的概率為P=W=w
c46
故選8
5.B
【詳解】
已知數(shù)列{%}為等差數(shù)列,則其前〃項和性質(zhì)有s“、S2?-S^S3“-S2”也是等差,
由題意得醺=7,5l(1-s,=14,
則S[5—S]()=21,515=21+21=42,
故選B
6.C.
【詳解】
x-y+2>0
由題意,作出不等式組,x+2y-7W0所表示的平面區(qū)域,如圖所示,
”1
2z2z
設(shè)z=2x+3y,可化為直線y=—§x+g,由圖象可知當(dāng)直線y=-§x+§過點A時,
此時在y軸上的截距最大,此時目標(biāo)函數(shù)取得最大值,
(x+2y-7=0
又由《,解得尤=5,y=l,即點A(5,l),
(7=1
所以目標(biāo)函數(shù)的最大值為Zmax=2*5+3x1=13,
即2x+3y的最大值為13,故選C.
7.D
【解析】
分析:先利用二倍角公式化簡兩個函數(shù)解析式,再用誘導(dǎo)公式化為同名函數(shù),再利用圖象平
移進(jìn)行判定.
兀
詳解:y=cos2x-sin2x+1=cos2x+l=sin(2x+—)+1
71Tt
=sin(2x+—)+l=sin[2(x+—)]+l,
24
且y=(sinx+cosx)1=sin2x+l,
所以為了得到函數(shù)yucos'-sin'+l的圖象,
只需將函數(shù)y=(situ:+coax)?的圖象向左平移:■個
單位長度.
8.C
【詳解】
由程序框圖,得:
x=glog,64=3,z=2,
x=^log23=log2V3e(pl),z=3,
x=-^log26<0,i=4,
結(jié)束循環(huán),輸出的i值為4.
9.B
【解析】
分析:由三視圖可知,該幾何體是一個組合體,它由兩部分組成,左邊是底面半徑與高都是
2的四分之一圓柱,右邊是底面是棱長為2的正方形,高為2的四棱錐,從而可得結(jié)果.
詳解:由三視圖可知,該幾何體是一個組合體,
它由兩部分組成,左邊是四分之一圓柱,
圓柱底面半徑為2,高為2,
所以體積為‘X乃x2?x2=2萬,
4
右邊是也是四棱錐,
四棱錐底面是棱長為2的正方形,高為2,
1,8
其體積為—X22X2=?,
33
Q
所以組合體體積為2〃+—,故選B.
3
10.A
【解析】
易知/(%)=何二^)+5足X的定義域為(一1,1),
1+X
1+X
且/(-乃二叱;—)+sin(-x)
1-x
1-4-Y
=-ln(--)-sinx=-/(x),
l-x
即函數(shù)〃x)是奇函數(shù),圖象關(guān)于原點對稱,
故排除選項C、D;
又F(g)=Ing+sing=sing-In3<0,
故排除選項B,故選A.
11.A
【詳解】
將直三棱柱擴(kuò)充為長方體,其體對角線長為29+16+4=屈,
外接球的半徑為叵,內(nèi)切球的半徑為1,
2
則其外接球與內(nèi)切球的表面積之比為"4兀二R2=—29,
4萬廠4
故選A
12.C
【詳解】
直線上H-y-2無+1=0,即為無(x-2)+l-y=0,可得直線恒過定點(2,1),
圓6:。-2)2+(>-1)2=1的圓心為(2,1),半徑為1,且C,。為直徑的端點,
由而=麗,可得AB的中點為(2,1),
設(shè)A8,y),B(X2,%),
2222
貝丁為“去+為”
(丹+W)(內(nèi)一々)?(y+%)(%一片)
兩式相減可得=0,
a2b2
由西+%2=4.x+%=2,
Ik-
可得左=21二&=_妾,由一2領(lǐng)k一1,即有已張匕1,
x}-x2a2礦
則橢圓的離心率
故選:C
7T
13.
4
【分析】
由(@一25)_1_萬,利用數(shù)量積為零可求得,=2,從而得石=。,2),求得無5=-1+6=5,
從而可得結(jié)果.
【詳解】
?.?0=(一1,3),5=(1"),
則打一25=(—1,3)—20,。=(—3,3—2。,
,(江一〃)J_4,...(左一潺)?汗二0,
即3+3x(3—2,)=0,解得r=2,
?.方=(1,2),
則口?Z?=-1+6=5,
a-b_5_>/2
則cos5
|a||fe|-VlOxVs_2
又5G[0,句,.?45=(,故答案為:
14.
169
【解析】
分析:先利用雙曲線的漸近線方程設(shè)出雙曲線的方程,再利用焦點坐標(biāo)確定有關(guān)系數(shù).
詳解:將3x±4y=0化為±±上=0,
43
22
設(shè)以二±2=o為漸近線的雙曲線方程為土一二=幾,
43169
又因為該雙曲線的焦點為(±5,0),
所以16/1+94=25,
22
解得;1=1,即雙曲線方程為今-二=1.
169
15.7x-y-4=0
【詳解】
???函數(shù))(x)是定義在R上的奇函數(shù)
二當(dāng)X<0時,—2x?
當(dāng)x>()時,一x<(),/(-x)=(-%)3-2(-x)'=-X3-2X2
則當(dāng)x>0時,f(x)=x3+2x2
/(l)=l+2=3
/'(x)=3f+4x,/'⑴=7
即切線方程為y—3=7(x—l),
即7x-y-4=0
故答案為7x-y_4=0
16.@@
【解析】
由題意,得圖1中線段為“,即S1=";
圖2中正六邊形邊長為|■,則S2=E+]x4=E+2a;
圖3中的最小正六邊形邊長為q,則53=5,+0/4=邑+。;
44
圖4中的最小正六邊形邊長為巴,則§4=S3+@x4=S2+0;
882
由此類推,S“—S"T=尋,
所以{s〃}為遞增數(shù)列,但不是等比數(shù)列,即①錯誤,②正確;
因為Sn=百+(S2—5J)+(S3—S2)H-----=Q+ZQ+Q+'H---------------------
<5a,
即存在最大的正數(shù)a=和一,使得對任意的正整數(shù)〃都有S,,<2018,
即④正確;③錯誤,
綜上可知正確的由②④.
2百
17.(1)直角三角形;(2)
亍
【解析】
分析:(1)先利用余弦定理得到A3的值,再利用勾股定理進(jìn)行證明;(2)先利用誘導(dǎo)公式
和兩角和的正弦公式求出相關(guān)角的正弦值,再利用正弦定理進(jìn)行求解.
詳解:(1)在:L4BC中,C=60°,BC=26,AC=G,
由余弦定理,得AB?=AC2+BC2—2AC.BC.COSC=9
所以AB=3,
所以他2+4。2=8。2,所以A3J_AC,
所以A=90°,所以DABC是直角三角形.
(2)設(shè)Nfi4D=a,貝lsina=m,NDAC=90°—a,0°<a<90°,
7
V21
所以sinZDAC=sin(90°-a)=cosa
在口48中,ZAr>C=180°-ZZMC-C=180o-(90o-?)-60o=tz+30o,
sinZADC=sin(a+30°)=sinacos3()°+cosasin3()°
2>/7V3V2113>/21
-----X——?+---X-=------,
727214
CDAC
由正弦定理得,
sinZDAC-sin/AOC
ACsinZDAC273
所以CO=
sinZADC3
18.(1)見解析;(2)36+4^+2^9
【解析】
分析:(1)先利用直角三角形和線線平行的性質(zhì)得到線線垂直,再利用線面垂直的判定定理
和性質(zhì)得到線面垂直和線線垂直;(2)分析四棱錐的各面的形狀,利用相關(guān)面積公式進(jìn)行求
解.
詳解:(1)因為NC=90。,即AC_L8C,且DE〃BC,
4
所以。E_L4C,則。E_LDC,DE±DAt,
又因為。CnO4=。,所以QE_L平面AQC.
因為4Fu平面4OC,所以。EJ_4E
又因為AiFJ_C£>,CDQDE=D,所以4FJ_平面BCDE,
又因為BEu平面BCQE,所以4F_LB£.
(2)由已知QE〃2C,且DE=;8C,得D,E分別為AC,AB的中點,
在Rtz\A8C中,AB=y/62+82=10'則4E=E8=5,AQ=OC=4,
則梯形BCDE的面積Si=;x(6+3)x4=18,
四棱錐4—BCDE的體積為V=;xl8x4F=125,即4尸=2鋪,
在RSAQF中,DF="_(2⑹2=2,即尸是CD的中點,
所以4C=40=4,
因為。E〃BC,DEmAyDC,
所以BCJ_平面AQC,所以8C_LAC,所以4,3=后:^=2了,
在等腰中,底邊48上的高為,5?—=2后,
所以四棱錐Ai-BCDE的表面積為S=S(+SAM+S八℃+S人因+S
50x+2000,%<10,
19.(1))=《xeN;(2)見解析;(3)10次.
'500x—2500,x>10,
【詳解】
f200xl0+50x,x<10,
(1)}"[250xl0+500(x-10),x>10,
50x+2000,x<10,
艮|Jy=<11N?
[500x-2500,x>10,
(2)因為“維修次數(shù)不大于10"的頻率="±券亞=0.6<0.8,
“維修次數(shù)不大于11”的頻率=小卷表的=0.9>0.8,
所以若要求“維修次數(shù)不大于w”的頻率不小于0.8,則n的最小值為11.
(3)若每臺都購買10次維修服務(wù),則有下表:
維修次數(shù)X89101112
頻數(shù)1020303010
費用y24002450250030003500
此時這100臺機(jī)器在維修上所需費用的平均數(shù)為
2400X10+2450x20+2500x30+3000x30+3500x10
若每臺都購買11次維修服務(wù),則有下表:
維修次數(shù)X89101112
頻數(shù)1020303010
費用y26002650270027503250
此時這100臺機(jī)器在維修上所需費用的平均數(shù)為
2600x10+2650x20+2700x30+2750x30+3250x10皿”,一、
y,=------------------------------------------------------=2750(兀)
2100
因為必<曠2,所以購買1臺機(jī)器的同時應(yīng)購買1。次維修服務(wù).
20.(1)見解析;(2)8.
【解析】
分析:(1)先根據(jù)三點坐標(biāo)判定三點與拋物線的位置,再確定三點坐標(biāo),利用兩直線的斜率
相等判定三點共線:(2)設(shè)出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于y的一元二次
方程,利用根與系數(shù)的關(guān)系、基本不等式進(jìn)行求解.
詳解:⑴由條件,可知N(〃,4)在拋物線C上,。?。)是拋物線C的焦點.
(-l)2=2p,、
v'4P=2,
所以<42=2pm解得<q=l,
p〃二4,
所以Q(1,O),N(4,4),
k=—-1_-0_=_44_04
所以"1.3,-=所以勺”=%N,
4-13
4
所以。、M、N三點共線.
(2)由條件可知勺#0,可設(shè)/:x=〃?+1,
代入C:y2=4x,得/一4切一4=0,
△=16心2+16>0,解得WGR.
設(shè)4(%,X),3(%,%),則,%=一4,
所以d:+%/;+*=才+%2M^=2^^=8,
當(dāng)且僅當(dāng)y:=g,即['=人或]=一,時,(4+4).=8
'16[%=-20[%=2及mm
21.(1)見解析;(2)見解析
詳解:⑴/(X)的定義域為(0,+"),/(*)=至衛(wèi)士1,
①若0<。420,則A=a2_8WO,
所以當(dāng)x>0時,/'(司=2?奴+130,
所以/(力在(0,+。)上單調(diào)遞增,
所以/(X)無極值點.
②若?!?0,則△>(),
由尸(x)=0得咚三,/=0±零三£
當(dāng)x的值變化時,/'(X),/(x)的值的變化情況如下:
(o,x)(七,X2)(x,+oo)
X再九22
/'(x)+0-0+
〃x)極大值極小值/
所以一(力有極大值點尤廣竺咚總,極小值點々=仁孚總
(2)由(1)及條件可知
.a-\Ja2-82V21
)vx=__________=______----———
4a+J/-83+J??-82
11cl
且辦+w=5a,%*2=弓,即尤2=不丁,。=2玉+7,
乙乙乙4]兒]
lnjrx22
所以/(玉)一/(%2)=i+\-axx-lrtr2-x2+ax2=21ax,+ln2-^+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 梅賽德斯租賃合同范本
- 外墻工程報價合同范本
- 商務(wù)局2024年工作總結(jié)及2025年工作計劃
- 運(yùn)輸汽車轉(zhuǎn)讓合同范本
- 職業(yè)軍人合同范本
- 高效團(tuán)隊建設(shè)培訓(xùn)課件:高效團(tuán)隊建設(shè)方法與實戰(zhàn)技巧
- 二零二五年度洗車場地租賃與汽車租賃服務(wù)合同
- 二零二五年度車位買賣合同及物業(yè)管理服務(wù)合同
- 2025年度老舊城區(qū)改造項目拆遷房屋出售協(xié)議書
- 二零二五年度知識產(chǎn)權(quán)股權(quán)抵押許可合同
- 人教版(PEP)五年級英語下冊第一單元測試卷-Unit 1 My day 含答案
- 企業(yè)名稱預(yù)先核準(zhǔn)通知書
- 統(tǒng)籌管理方案
- 建筑工程安全文明施工標(biāo)準(zhǔn)化圖集(附圖豐富)
- 人教版 美術(shù)二年級上冊 第9課 蜻蜓飛飛 教案
- Unit 1 Travel教案-2023-2024學(xué)年高一下學(xué)期 中職英語高教版(2023修訂版)基礎(chǔ)模塊2
- DB3206T 1083-2024機(jī)關(guān)會議服務(wù)人員操作技術(shù)規(guī)范
- 眼鏡學(xué)智慧樹知到答案2024年溫州醫(yī)科大學(xué)
- 中醫(yī)淋巴排毒
- 提高鉆孔灌注樁成孔質(zhì)量一次驗收合格率
- 住宅小區(qū)工程施工組織設(shè)計范本
評論
0/150
提交評論