版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖南省長沙市開福區(qū)周南中學八年級下冊數(shù)學期末學業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知關(guān)于x的分式方程=1的解是負數(shù),則m的取值范圍是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠22.點在反比例函數(shù)的圖像上,則的值為()A. B. C. D.3.如圖,在數(shù)軸上表示關(guān)于x的不等式組的解集是()A. B. C. D.4.下列所述圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A.矩形 B.平行四邊形 C.正五邊形 D.正三角形5.下列函數(shù)中,一定是一次函數(shù)的是A. B. C. D.6.下列命題,其中正確的有()①平行四邊形的兩組對邊分別平行且相等②平行四邊形的對角線互相垂直平分③平行四邊形的對角相等,鄰角互補④平行四邊形只有一組對邊相等,一組對邊平行A.1個 B.2個 C.3個 D.4個7.如圖,在四邊形ABCD中,∠A=90°,AB=3,,點M、N分別為線段BC、AB上的動點,點E、F分別為DM、MN的中點,則EF長度的最大值為()A.2 B.3 C.4 D.8.下列調(diào)查:①了解夏季冷飲市場上冰淇淋的質(zhì)量;②了解嘉淇同學20道英語選擇題的通過率;③了解一批導彈的殺傷范圍;④了解全國中學生睡眠情況.不適合普查而適合做抽樣調(diào)查的是()A.①②④ B.①③④ C.②③④ D.①②③9.已知直線y=(k﹣2)x+k經(jīng)過第一、二、四象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<210.如圖在5×5的正方形網(wǎng)格中(每個小正方形的邊長為1個單位長度),格點上有A、B、C、E五個點,若要求連接兩個點所成線段的長度大于3且小于4,則可以連接()A.AE B.AB C.AD D.BE11.如圖,在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點P從點A出發(fā),以每秒3cm的速度沿折線A-B-C-D方向運動,點Q從點D出發(fā),以每秒2cm的速度沿線段DC方向向點C運動、已知動點P,Q同時出發(fā),當點Q運動到點C時,點P,Q停止運動,設(shè)運動時間為t秒,在這個運動過程中,若△BPQ的面積為20cm2,則滿足條件的t的值有(
)A.1個 B.2個 C.3個 D.4個12.如圖,點A是反比例函數(shù)圖像上一點,AC⊥x軸于點C,與反比例函數(shù)圖像交于點B,AB=2BC,連接OA、OB,若△OAB的面積為2,則m+n的值()A.-3 B.-4 C.-6 D.-8二、填空題(每題4分,共24分)13.如圖,四邊形是正方形,點在上,繞點順時針旋轉(zhuǎn)后能夠與重合,若,,試求的長是__________.14.如圖,在△ABC中,BC=9,AD是BC邊上的高,M、N分別是AB、AC邊的中點,DM=5,DN=3,則△ABC的周長是__.15.內(nèi)角和等于外角和2倍的多邊形是__________邊形.16.如圖,某會展中心在會展期間準備將高5m,長13m,寬2m的樓道上鋪地毯,已知地毯每平方米18元,請你幫助計算一下,鋪完這個樓道至少需要____________元錢.17.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面積為49,則正方形A、B、C、D的面積之和為_____.18.一個裝有進水管和出水管的容器,從某時刻起只打開進水管進水,經(jīng)過一段時間,再打開出水管放水.至12分鐘時,關(guān)停進水管.在打開進水管到關(guān)停進水管這段時間內(nèi),容器內(nèi)的水量y(單位:升)與時間x(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.關(guān)停進水管后,經(jīng)過_____分鐘,容器中的水恰好放完.三、解答題(共78分)19.(8分)如圖,點O是△ABC內(nèi)一點,連接OB,OC,并將AB,OB,OC,AC的中點D,E,F(xiàn),G依次連接得到四邊形DEFG.(1)求證:四邊形DEFG是平行四邊形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的長度.20.(8分)如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.(1)求證△ACD≌△BFD(2)求證:BF=2AE;(3)若CD=,求AD的長.21.(8分)如圖,在平面直角坐標系中,直線EF交x,y軸子點F,E,交反比例函數(shù)(x>0)圖象于點C,D,OE=OF=,以CD為邊作矩形ABCD,頂點A與B恰好落在y軸與x軸上.(1)若矩形ABCD是正方形,求CD的長;(2)若AD:DC=2:1,求k的值.22.(10分)如圖,在正方形ABCD中,點E在邊AD上,點F在邊BC的延長線上,連結(jié)EF與邊CD相交于點G,連結(jié)BE與對角線AC相交于點H,AE=CF,BE=EG.(1)求證:EF∥AC;(2)求∠BEF大小;23.(10分)如圖,從電線桿離地面12m處向地面拉一條長為13m的鋼纜,則地面鋼纜固定點A到電線桿底部B的距離為_____.24.(10分)如圖,在中,,點為邊上的動點,點從點出發(fā),沿邊向點運動,當運動到點時停止,若設(shè)點運動的時間為秒,點運動的速度為每秒2個單位長度.(1)當時,=,=;(2)求當為何值時,是直角三角形,說明理由;(3)求當為何值時,,并說明理由.25.(12分)如圖,已知直線和上一點,用尺規(guī)作的垂線,使它經(jīng)過點.(保留作圖痕跡,不寫作法)26.如圖,在?ABCD中,E,F(xiàn)分別是AD,BC上的點,且DE=BF,AC⊥EF.(1)求證:四邊形AECF是菱形(2)若AB=6,BC=10,F(xiàn)為BC中點,求四邊形AECF的面積
參考答案一、選擇題(每題4分,共48分)1、D【解析】
解方程得到方程的解,再根據(jù)解為負數(shù)得到關(guān)于m的不等式結(jié)合分式的分母不為零,即可求得m的取值范圍.【詳解】=1,解得:x=m﹣3,∵關(guān)于x的分式方程=1的解是負數(shù),∴m﹣3<0,解得:m<3,當x=m﹣3=﹣1時,方程無解,則m≠2,故m的取值范圍是:m<3且m≠2,故選D.【點睛】本題考查了分式方程的解,熟練掌握分式方程的解法以及分式方程的分母不為零是解題關(guān)鍵.2、B【解析】
把點M代入反比例函數(shù)中,即可解得K的值.【詳解】解:∵點在反比例函數(shù)的圖像上,∴,解得k=3.【點睛】本題考查了用待定系數(shù)法求函數(shù)解析式,正確代入求解是解題的關(guān)鍵.3、C【解析】
根據(jù)圖形可知:x<2且x≥-1,故此可確定出不等式組的解集.【詳解】∵由圖形可知:x<2且x≥?1,∴不等式組的解集為?1≤x<2.故答案選:C.【點睛】本題考查了在數(shù)軸上表示不等式的解集,解題的關(guān)鍵是根據(jù)數(shù)軸上的已知條件表示出不等式的解集.4、A【解析】試題分析:在一個平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這樣的圖形叫做中心對稱圖形.根據(jù)定義可得:平行四邊形只是中心對稱圖形,正五邊形、正三角形只是軸對稱圖形,只有矩形符合.考點:軸對稱圖形與中心對稱圖形.5、A【解析】
根據(jù)一次函數(shù)的定義,逐一分析四個選項,此題得解.【詳解】解:、,是一次函數(shù),符合題意;、自變量的次數(shù)為,不是一次函數(shù),不符合題意;、自變量的次數(shù)為2,不是一次函數(shù),不符合題意;、當時,函數(shù)為常數(shù)函數(shù),不是一次函數(shù),不符合題意.故選:.【點睛】本題考查了一次函數(shù)的定義,牢記一次函數(shù)的定義是解題的關(guān)鍵.6、B【解析】
根據(jù)平行四邊形的性質(zhì)判斷即可.【詳解】解:①平行四邊形的兩組對邊分別平行且相等,正確;②平行四邊形的對角線互相平分,但不一定垂直,錯誤;③平行四邊形的對角相等,鄰角互補,正確;④平行四邊形兩組對邊分別平行且相等,不是只有一組相等,一組平行,錯誤,正確的有2個.故選B.【點睛】本題考查了平行四邊形的性質(zhì),平行四邊形的兩組對邊分別平行且相等,對角線互相平分,對角相等,鄰角互補,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.7、A【解析】
連接BD、ND,由勾股定理得可得BD=4,由三角形中位線定理可得EF=DN,當DN最長時,EF長度的最大,即當點N與點B重合時,DN最長,由此即可求得答案.【詳解】連接BD、ND,由勾股定理得,BD==4,∵點E、F分別為DM、MN的中點,∴EF=DN,當DN最長時,EF長度的最大,∴當點N與點B重合時,DN最長,∴EF長度的最大值為BD=2,故選A.【點睛】本題考查了勾股定理,三角形中位線定理,正確分析、熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.8、B【解析】
調(diào)查方式的選擇需要將普查的局限性和抽樣調(diào)查的必要性結(jié)合起來,考查會給被調(diào)查對象帶來損傷破壞,以及考查經(jīng)費和時間都非常有限時,普查就受到限制,這時就應(yīng)選擇抽樣調(diào)查.【詳解】解:①④中個體數(shù)量多,范圍廣,工作量大,不宜采用普查,只能采用抽樣調(diào)查;③了解一批導彈的殺傷范圍具有破壞性不宜普查;②個體數(shù)量少,可采用普查方式進行調(diào)查.故選B.【點睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大時,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.9、C【解析】
由一次函數(shù)經(jīng)過的象限確定其圖象的增減性,然后確定k的取值范圍即可.【詳解】∵一次函數(shù)y=(k-2)x+k的圖象經(jīng)過第一、二、四象限,
∴k-2<0且k>0;
∴0<k<2,
故選C.【點睛】考查一次函數(shù)圖象在坐標平面內(nèi)的位置與k、b的關(guān)系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一、三象限;k<0時,直線必經(jīng)過二、四象限;b>0時,直線與y軸正半軸相交;b=0時,直線過原點;b<0時,直線與y軸負半軸相交.10、C【解析】
根據(jù)勾股定理求出AD,BE,根據(jù)算術(shù)平方根的大小比較方法解答.【詳解】AE=4,AB=3,由勾股定理得AD=,3<<4,BE==1.故選C.【點睛】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.11、B【解析】
過A作AH⊥DC,由勾股定理求出DH的長.然后分三種情況進行討論:即①當點P在線段AB上,②當點P在線段BC上,③當點P在線段CD上,根據(jù)三種情況點的位置,可以確定t的值.【詳解】解:過A作AH⊥DC,∴AH=BC=2cm,DH===1.i)當P在AB上時,即時,如圖,,解得:;ii)當P在BC上時,即<t≤1時,BP=3t-10,CQ=11-2t,,化簡得:3t2-34t+100=0,△=-44<0,∴方程無實數(shù)解.iii)當P在線段CD上時,若點P在線段CD上,若點P在Q的右側(cè),即1≤t≤,則有PQ=34-5t,,<1(舍去);若點P在Q的左側(cè)時,即,則有PQ=5t-34,;t=7.2.綜上所述:滿足條件的t存在,其值分別為,t2=7.2.故選B.【點睛】本題是平行四邊形中的動點問題,解決問題時,一定要變動為靜,將其轉(zhuǎn)化為常見的幾何問題,再進行解答.12、D【解析】
由AB=2BC可得由于△OAB的面積為2可得,由于點A是反比例函數(shù)可得由于m<0可求m,n的值,即可求m+n的值?!驹斀狻拷猓骸逜B=2BC∴∵△OAB的面積為2∴,∵點A是反比例函數(shù)∴又∵m<0∴m=-6同理可得:n=-2∴m+n=-8故答案為:D【點睛】本題考查了反比例函數(shù)與幾何圖形,熟練掌握反比例函數(shù)與三角形面積的關(guān)系是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、.【解析】
由正方形的性質(zhì)得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋轉(zhuǎn)的性質(zhì)得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,證出△PAP′是等腰直角三角形,得出PP′=AP,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋轉(zhuǎn)后能夠與△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、勾股定理、全等三角形的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形和旋轉(zhuǎn)的性質(zhì)是解決問題的關(guān)鍵.14、1【解析】
由直角三角形斜邊上的中線求得AB=2DM,AC=2DN,結(jié)合三角形的周長公式解答.【詳解】解:∵在△ABC中,AD是BC邊上的高,M、N分別是AB、AC邊的中點,
∴AB=2DM=10,AC=2DN=6,
又BC=9,
∴△ABC的周長是:AB+AC+BC=10+6+9=1.
故答案是:1.【點睛】本題考查三角形的中線性質(zhì),尤其是:直角三角形斜邊上的中線等于斜邊的一半.15、六【解析】
設(shè)多邊形有n條邊,則內(nèi)角和為180°(n-2),再根據(jù)內(nèi)角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【詳解】解:設(shè)多邊形有n條邊,由題意得:
180(n-2)=360×2,
解得:n=6,
故答案為:六.【點睛】本題考查多邊形的內(nèi)角和和外角和,關(guān)鍵是掌握內(nèi)角和為180°(n-2).16、612.【解析】
先由勾股定理求出BC的長為12m,再用(AC+BC)乘以2乘以18即可得到答案【詳解】如圖,∵∠C=90,AB=13m,AC=5m,∴BC==12m,∴(元),故填:612.【點睛】此題考查勾股定理、平移的性質(zhì),題中求出地毯的總長度是解題的關(guān)鍵,地毯的長度由平移可等于樓梯的垂直高度和水平距離的和,進而求得地毯的面積.17、1【解析】
根據(jù)勾股定理計算即可.【詳解】解:最大的正方形的面積為1,由勾股定理得,正方形E、F的面積之和為1,∴正方形A、B、C、D的面積之和為1,故答案為1.【點睛】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.18、1【解析】由0-4分鐘的函數(shù)圖象可知進水管的速度,根據(jù)4-12分鐘的函數(shù)圖象求出水管的速度,再求關(guān)停進水管后,出水經(jīng)過的時間.解:進水管的速度為:20÷4=5(升/分),出水管的速度為:5-(30-20)÷(12-4)=3.75(升/分),∴關(guān)停進水管后,出水經(jīng)過的時間為:30÷3.75=1分鐘.故答案為1.三、解答題(共78分)19、(1)證明見解析;(2)1【解析】
(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF=12BC,DG∥BC且DG=12BC,從而得到DG=EF,DG∥(2)想辦法證明OM=MF=ME即可解決問題.【詳解】(1)證明:∵D、G分別是AB、AC的中點,∴DG∥BC,DG=12BC∵E、F分別是OB、OC的中點,∴EF∥BC,EF=12BC∴DG=EF,DG∥EF,∴四邊形DEFG是平行四邊形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=1.由(1)有四邊形DEFG是平行四邊形,∴DG=EF=1.【點睛】本題考查平行四邊形的判定與性質(zhì),三角形的中位線,直角三角形的性質(zhì),解本題的關(guān)鍵是判定四邊形DEFG是平行四邊形.20、(1)見解析;(1)見解析;(3)AD=1+【解析】
(1)先判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=∠CBE,然后利用“角邊角”證明△ADC和△BDF全等;(1)根據(jù)全等三角形對應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=1AE,從而得證;(3)根據(jù)全等三角形對應(yīng)邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解.【詳解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3)∵△ACD≌△BFD,∴DF=CD=,在Rt△CDF中,CF=,∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì)的應(yīng)用,以及線段垂直平分線上的點到線段兩端點的距離相的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.21、(1);(2)k=12【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理可得EF的長,繼而根據(jù)正方形的性質(zhì)即可得DE=DC=CF,從而即可求得CD的長;(2)由四邊形ABCD是矩形,可得AD=BC,根據(jù)(1)得:AD=DE,BC=FC,且2CD=AD,從而可得2CD=DE=CF,根據(jù)DE+CD+FC=EF,繼而可求得DE的長,作DG⊥AE,垂足為點G,在等腰直角三角形ADE中,求得DG=EG=2,繼而求得OG長,從而可得點D(2,3),即可求得k.【詳解】(1)∵四邊形ABCD是正方形,∴AB=BC=CD=AD,∠ADC=∠BCD=90°,∴∠ADE=∠BCF=90°,∵OE=OF=5,又∵∠EOF=90°,∴∠OEF=∠OFE=45°,F(xiàn)E=10,∴CD=DE=AD=CB=CF=;(2)∵四邊形ABCD是矩形,∴AD=BC,∵由(1)得:AD=DE,BC=FC,且2CD=AD,∴2CD=DE=CF,∵DE+CD+FC=EF,∴DE=EF=4,作DG⊥AE,垂足為點G,由(1)得在等腰直角三角形ADE中,DG=EG=DE=2,∴OG=OE-EG=5-2=3,∴D(2,3),得:k=12.【點睛】本題考查了反比例函數(shù)與幾何的綜合,涉及到等腰直角三角形的性質(zhì)、正方形的性質(zhì)、矩形的性質(zhì)等,熟練掌握相關(guān)性質(zhì)和定理以及反比例函數(shù)比例系數(shù)k的幾何意義是解題的關(guān)鍵.22、(1)、證明過程見解析;(2)、60°.【解析】試題分析:根據(jù)正方形的性質(zhì)得出AD∥BF,結(jié)合AE=CF可得四邊形ACFE是平行四邊形,從而得出EF∥AC;連接BG,根據(jù)EF∥AC可得∠F=∠ACB=45°,根據(jù)∠GCF=90°可得∠CGF=∠F=45°可得CG=CF,根據(jù)AE=CF可得AE=CG,從而得出△BAE≌△BCG,即BE=EG,得出△BEG為等邊三角形,得出∠BEF的度數(shù).試題解析:(1)∵四邊形ABCD是正方形∴AD∥BF∵AE="CF"∴四邊形ACFE是平行四邊形∴EF∥AC(2)連接BG∵EF∥AC,∴∠F=∠ACB=45°,∵∠GCF=90°,∴∠CGF=∠F=45°,∴CG=CF,∵AE=CF,∴AE=CG,∴△BAE≌△BCG(SAS)∴BE=BG,∵BE=EG,∴△BEG是等邊三角形,∴∠BEF=60°考點:平行四邊形的判定、矩形的性質(zhì)、三角形全等的應(yīng)用.23、5m.【解析】
根據(jù)勾股定理即可得到結(jié)果.【詳解】解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2∴AB2=AC2-BC2=132-122=25∴AB=5答:地面鋼纜固定點A到電線桿底部B的距離為5米.考點:本題考查勾股定理的應(yīng)用點評:解答本題的關(guān)鍵是熟練掌握勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方.24、(1)CD=4,AD=16;(2)當t=3.6或10秒時,是直角三角形,理由見解析;(3)當t=7.2秒時,,理由見解析【解析】
(1)根據(jù)CD=速度×時間列式計算即可得解,利用勾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 換熱器課程設(shè)計致謝范文
- 二零二五年度合資成立智能物流配送公司合作協(xié)議3篇
- 通信安全課程設(shè)計題目
- 波紋阻火器課程設(shè)計
- 二零二五年度智能制造定向增發(fā)股份認購協(xié)議書3篇
- 英語宏觀課程設(shè)計
- 二零二五年度智能通信基站場地租用及升級合同3篇
- 辦公室文員崗位的職責描述模版(2篇)
- 二零二五年度按揭中二手房買賣合同范本:按揭利率風險控制版3篇
- 小學“陽光少年”評選活動方案(3篇)
- 北京語言大學保衛(wèi)處管理崗位工作人員招考聘用【共500題附答案解析】模擬試卷
- 人教版七年級下冊數(shù)學全冊完整版課件
- 初中生物人教七年級上冊(2023年更新) 生物圈中的綠色植物18 開花和結(jié)果
- 水電解質(zhì)及酸堿平衡的業(yè)務(wù)學習
- 統(tǒng)編版一年級語文上冊 第5單元教材解讀 PPT
- CSCEC8XN-SP-安全總監(jiān)項目實操手冊
- 口腔衛(wèi)生保健知識講座班會全文PPT
- 成都市產(chǎn)業(yè)園區(qū)物業(yè)服務(wù)等級劃分二級標準整理版
- 最新監(jiān)督學模擬試卷及答案解析
- ASCO7000系列GROUP5控制盤使用手冊
- 污水處理廠關(guān)鍵部位施工監(jiān)理控制要點
評論
0/150
提交評論