版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
關(guān)于排列組合問(wèn)題的求解策略2.掌握解決排列組合問(wèn)題的常用策略;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力
3.學(xué)會(huì)應(yīng)用數(shù)學(xué)思想和方法解決排列組合問(wèn)題.教學(xué)目標(biāo)1.進(jìn)一步理解和應(yīng)用分步計(jì)數(shù)原理和分類計(jì)數(shù)原理。第2頁(yè),共38頁(yè),2024年2月25日,星期天
完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2
種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.1.分類計(jì)數(shù)原理(加法原理)
第3頁(yè),共38頁(yè),2024年2月25日,星期天完成一件事,需要分成n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,…,做第n步有mn種不同的方法,那么完成這件事共有:種不同的方法.2.分步計(jì)數(shù)原理(乘法原理)第4頁(yè),共38頁(yè),2024年2月25日,星期天分步計(jì)數(shù)原理各步相互依存,每步中的方法完成事件的一個(gè)階段,不能完成整個(gè)事件.3.分類計(jì)數(shù)原理分步計(jì)數(shù)原理區(qū)別分類計(jì)數(shù)原理方法相互獨(dú)立,任何一種方法都可以獨(dú)立地完成這件事。第5頁(yè),共38頁(yè),2024年2月25日,星期天解決排列組合綜合性問(wèn)題的一般過(guò)程如下:1.認(rèn)真審題弄清要做什么事2.怎樣做才能完成這件事,即分步還是分類,確定分多少步及多少類。3.確定排列問(wèn)題(有序)還是組合(無(wú)序)問(wèn)題,元素總數(shù)是多少及取出多少個(gè)元素.※解決排列組合綜合性問(wèn)題,往往類與步交叉,因此必須掌握一些常用的解題策略第6頁(yè),共38頁(yè),2024年2月25日,星期天一.合理分類與分步策略例1.在一次演唱會(huì)上共10名演員,其中8人能唱歌,5人會(huì)跳舞,現(xiàn)要演出一個(gè)2人唱歌2人伴舞的節(jié)目,有多少選派方法?++第7頁(yè),共38頁(yè),2024年2月25日,星期天從4名男生和3名女生中選出4人參加某個(gè)座談會(huì),若這4人中必須既有男生又有女生,則不同的選法共有_______34
練習(xí)題第8頁(yè),共38頁(yè),2024年2月25日,星期天二.特殊元素和特殊位置優(yōu)先策略例2.由0,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).
解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置先排末位共有___
然后排首位共有___最后排其它位置共有___由分步計(jì)數(shù)原理得=288位置分析法和元素分析法是解決排列組合問(wèn)題最常用也是最基本的方法,若以元素分析為主,需先安排特殊元素,再處理其它元素.若以位置分析為主,需先滿足特殊位置的要求,再處理其它位置。第9頁(yè),共38頁(yè),2024年2月25日,星期天
練習(xí)題7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問(wèn)有多少不同的種法?第10頁(yè),共38頁(yè),2024年2月25日,星期天三.相鄰元素捆綁策略例3.7人站成一排,其中甲乙相鄰且丙丁相鄰,共有多少種不同的排法.甲乙丙丁由分步計(jì)數(shù)原理可得共有種不同的排法=480解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,再與其它元素進(jìn)行排列,同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排。要求某幾個(gè)元素必須排在一起的問(wèn)題,可以用捆綁法來(lái)解決.即將需要相鄰的元素合為一個(gè)元素,再與其它元素一起作排列,同時(shí)要注意合并元素內(nèi)部也必須排列.第11頁(yè),共38頁(yè),2024年2月25日,星期天四.不相鄰問(wèn)題插空策略例4.一個(gè)晚會(huì)的節(jié)目有4個(gè)舞蹈,2個(gè)相聲,3個(gè)獨(dú)唱,舞蹈節(jié)目不能連續(xù)出場(chǎng),則節(jié)目的出場(chǎng)順序有多少種?解:分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有
種,第二步將4舞蹈插入第一步排好的6個(gè)元素中間包含首尾兩個(gè)空位共有種
不同的方法
由分步計(jì)數(shù)原理,節(jié)目的不同順序共有
種相相獨(dú)獨(dú)獨(dú)元素相離問(wèn)題可先把沒(méi)有位置要求的元素進(jìn)行排隊(duì)再把不相鄰元素插入中間和兩端第12頁(yè),共38頁(yè),2024年2月25日,星期天某人射擊8槍,命中4槍,4槍命中恰好有3槍連在一起的情形的不同種數(shù)為()練習(xí)題20第13頁(yè),共38頁(yè),2024年2月25日,星期天某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)新節(jié)目插入原節(jié)目單中,且兩個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)為()
30練習(xí)題第14頁(yè),共38頁(yè),2024年2月25日,星期天五.定序問(wèn)題除法策略例5.7人排隊(duì),其中甲乙丙3人順序一定共有多少不同的排法解:(除序法)對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題,可先把這幾個(gè)元素與其他元素一起進(jìn)行排列,然后用總排列數(shù)除以這幾個(gè)元素之間的全排列數(shù),則共有不同排法種數(shù)是:
(空位法)設(shè)想有7把椅子讓除甲乙丙以外的四人就坐共有
種方法,其余的三個(gè)位置甲乙丙共有
種坐法,則共有
種方法
1思考:可以先讓甲乙丙就坐嗎?第15頁(yè),共38頁(yè),2024年2月25日,星期天練習(xí)題10人身高各不相等,排成前后排,每排5人,要求從左至右身高逐漸增加,共有多少排法?第16頁(yè),共38頁(yè),2024年2月25日,星期天六.重排問(wèn)題求冪策略例6.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有
種分法.7把第二名實(shí)習(xí)生分配到車間也有7種分法,依此類推,由分步計(jì)數(shù)原理共有種不同的排法第17頁(yè),共38頁(yè),2024年2月25日,星期天某8層大樓一樓電梯上來(lái)8名乘客人,他們到各自的一層下電梯,下電梯的方法()練習(xí)題第18頁(yè),共38頁(yè),2024年2月25日,星期天七.多排問(wèn)題直排策略例7.8人排成前后兩排,每排4人,其中甲乙在前排,丁在后排,共有多少排法解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.先在前4個(gè)位置排甲乙兩個(gè)特殊元素有____種,再排后4個(gè)位置上的特殊元素有_____種,其余的5人在5個(gè)位置上任意排列有____種,則共有_________種.前排后排一般地,元素分成多排的排列問(wèn)題,可歸結(jié)為一排考慮,再分段研究.第19頁(yè),共38頁(yè),2024年2月25日,星期天八.排列組合混合問(wèn)題先選后排策略例8.有5個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.解:第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有__種方法.再把5個(gè)元素(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有_____種方法.根據(jù)分步計(jì)數(shù)原理裝球的方法共有_____解決排列組合混合問(wèn)題,先選后排是最基本的指導(dǎo)思想.此法與相鄰元素捆綁策略相似嗎?第20頁(yè),共38頁(yè),2024年2月25日,星期天練習(xí)題1.一個(gè)班有6名戰(zhàn)士,其中正副班長(zhǎng)各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長(zhǎng)有且只有1人參加,則不同的選法有________種1922.有4個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),恰有一個(gè)空盒,共有多少不同的裝法.第21頁(yè),共38頁(yè),2024年2月25日,星期天九.選即為排策略(默認(rèn))例9.同步20頁(yè)8(方法兩種)
27頁(yè)2025頁(yè)7解決此類問(wèn)題,提前默認(rèn)游戲規(guī)則是最基本的指導(dǎo)思想.第22頁(yè),共38頁(yè),2024年2月25日,星期天十.小集團(tuán)問(wèn)題先整體局部策略31524小集團(tuán)小集團(tuán)排列問(wèn)題中,先整體后局部,再結(jié)合其它策略進(jìn)行處理。例10.計(jì)劃展出10幅不同的畫,其中1幅水彩畫,4幅油畫,5幅國(guó)畫,排成一行陳列,要求同一品種的必須連在一起,并且水彩畫不在兩端,那么共有陳列方式的種數(shù)為_______第23頁(yè),共38頁(yè),2024年2月25日,星期天5男生和5女生站成一排照像,男生相鄰,女生也相鄰的排法有_______種第24頁(yè),共38頁(yè),2024年2月25日,星期天十一.元素相同問(wèn)題隔板策略例11.有10個(gè)運(yùn)動(dòng)員名額,在分給7個(gè)班,每
班至少一個(gè),有多少種分配方案?
解:因?yàn)?0個(gè)名額沒(méi)有差別,把它們排成一排。相鄰名額之間形成9個(gè)空隙。在9個(gè)空檔中選6個(gè)位置插個(gè)隔板,可把名額分成7份,對(duì)應(yīng)地分給7個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有___________種分法。一班二班三班四班五班六班七班將n個(gè)相同的元素分成m份(n,m為正整數(shù)),每份至少一個(gè)元素,可以用m-1塊隔板,插入n個(gè)元素排成一排的n-1個(gè)空隙中,所有分法數(shù)為第25頁(yè),共38頁(yè),2024年2月25日,星期天練習(xí)題10個(gè)相同的球裝5個(gè)盒中,每盒至少一個(gè)球,有多少裝法?第26頁(yè),共38頁(yè),2024年2月25日,星期天十二.正難則反總體淘汰策略再淘汰和小于10的偶數(shù)共___________符合條件的取法共有___________9013015017023025027041045043-9+有些排列組合問(wèn)題,正面直接考慮比較復(fù)雜,而它的反面往往比較簡(jiǎn)捷,可以先求出它的反面,再?gòu)恼w中淘汰.例12.我們班里有43位同學(xué),從中任抽5人,正、副班長(zhǎng)、團(tuán)支部書記至少有一人在內(nèi)的抽法有多少種?第27頁(yè),共38頁(yè),2024年2月25日,星期天十三.構(gòu)造模型策略一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問(wèn)題直觀解決例13.某排共有10個(gè)座位,若4人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種?120第28頁(yè),共38頁(yè),2024年2月25日,星期天十四.實(shí)際操作窮舉策略例14.設(shè)有編號(hào)1,2,3,4,5的五個(gè)球和編號(hào)1,2
3,4,5的五個(gè)盒子,現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi),要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.有多少投法
解:從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有_____種
還剩下3球3盒序號(hào)不能對(duì)應(yīng),利用實(shí)際操作法,如果剩下3,4,5號(hào)球,3,4,5號(hào)盒3號(hào)球裝4號(hào)盒時(shí),則4,5號(hào)球有只有1種裝法3號(hào)盒4號(hào)盒5號(hào)盒345第29頁(yè),共38頁(yè),2024年2月25日,星期天十四.實(shí)際操作窮舉策略例14.設(shè)有編號(hào)1,2,3,4,5的五個(gè)球和編號(hào)1,2
3,4,5的五個(gè)盒子,現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi),要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.有多少投法
解:從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有_____種
還剩下3球3盒序號(hào)不能對(duì)應(yīng),利用實(shí)際操作法,如果剩下3,4,5號(hào)球,3,4,5號(hào)盒3號(hào)球裝4號(hào)盒時(shí),則4,5號(hào)球有只有1種裝法,同理3號(hào)球裝5號(hào)盒時(shí),4,5號(hào)球有也只有1種裝法,由分步計(jì)數(shù)原理有2種第30頁(yè),共38頁(yè),2024年2月25日,星期天對(duì)于條件比較復(fù)雜的排列組合問(wèn)題,不易用公式進(jìn)行運(yùn)算,往往利用窮舉法或畫出樹狀圖會(huì)收到意想不到的結(jié)果練習(xí)題同一寢室4人,每人寫一張賀年卡集中起來(lái),然后每人各拿一張別人的賀年卡,則四張賀年卡不同的分配方式有多少種?(9)2.給圖中區(qū)域涂色,要求相鄰區(qū)域不同色,現(xiàn)有4種可選顏色,則不同的著色方法有____種2134572第31頁(yè),共38頁(yè),2024年2月25日,星期天結(jié)束用心體會(huì),注重反思與實(shí)踐第32頁(yè),共38頁(yè),2024年2月25日,星期天十七.化歸策略例18.25人排成5×5方隊(duì),現(xiàn)從中選3人,要求3人不在同一行也不在同一列,不同的
選法有多少種?解:將這個(gè)問(wèn)題退化成9人排成3×3方隊(duì),現(xiàn)從中選3人,要求3人不在同一行也不在同一列,有多少選法.這樣每行必有1人從其中的一行中選取1人后,把這人所在的行列都劃掉,第33頁(yè),共38頁(yè),2024年2月25日,星期天從5×5方隊(duì)中選取3行3列有_____選法所以從5×5方隊(duì)選不在同一行也不在同一列的3人有__________________選法。處理復(fù)雜的排列組合問(wèn)題時(shí)可以把一個(gè)問(wèn)題退化成一個(gè)簡(jiǎn)要的問(wèn)題,通過(guò)解決這個(gè)簡(jiǎn)要的問(wèn)題的解決找到解題方法,從而進(jìn)下一步解決原來(lái)的問(wèn)題如此繼續(xù)下去.從3×3方隊(duì)中選3人的方法有___________種。再?gòu)?×5方隊(duì)選出3×3方隊(duì)便可解決問(wèn)題第34頁(yè),共38頁(yè),2024年2月25日,星期天某城市的街區(qū)由12個(gè)全等的矩形區(qū)組成其中實(shí)線表示馬路,從A走到B的最短路徑有多少種?練習(xí)題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球3D生物打印植入物行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2024年軍隊(duì)文職人員招聘考試題庫(kù)二
- 2025年度旅游產(chǎn)業(yè)轉(zhuǎn)型升級(jí)個(gè)人咨詢服務(wù)協(xié)議
- 2025版文化產(chǎn)業(yè)投資合作開發(fā)協(xié)議3篇
- 2025版住宅小區(qū)物業(yè)委托維護(hù)管理協(xié)議3篇
- 二零二五年度藝術(shù)場(chǎng)地租賃合同中的藝術(shù)創(chuàng)作與展覽指導(dǎo)2篇
- 二零二五年度阿拉爾經(jīng)濟(jì)技術(shù)開發(fā)區(qū)環(huán)保產(chǎn)業(yè)合作開發(fā)合同3篇
- 2024版影視器材租賃合同下載
- 2025版房地產(chǎn)銷售合同標(biāo)準(zhǔn)模板
- 2024糯玉米采購(gòu)協(xié)議書
- 開工第一課安全培訓(xùn)內(nèi)容
- 經(jīng)顱磁刺激增強(qiáng)定神狀態(tài)的研究
- 部編版小學(xué)語(yǔ)文五年級(jí)下冊(cè)集體備課教材分析主講
- 電氣設(shè)備建筑安裝施工圖集
- 《工程結(jié)構(gòu)抗震設(shè)計(jì)》課件 第10章-地下建筑抗震設(shè)計(jì)
- 公司法務(wù)部工作細(xì)則(草案)
- 第18課《文言文二則 鐵杵成針》(學(xué)習(xí)任務(wù)單)- 四年級(jí)語(yǔ)文下冊(cè)部編版
- 《功能材料概論》期末考試試卷及參考答案2023年12月
- 機(jī)器設(shè)備抵押合同
- 超聲科質(zhì)量控制制度及超聲科圖像質(zhì)量評(píng)價(jià)細(xì)則
- 腹瀉的護(hù)理課件
評(píng)論
0/150
提交評(píng)論