版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
水文地球化學(xué)主講:郭清海中國地質(zhì)大學(xué)(武漢)環(huán)境學(xué)院一門關(guān)于地下水科學(xué)1/55化學(xué)平衡、離子對(duì)與絡(luò)合Chemicalequilibrium,IonPairingandComplexing2/55水是極性分子,是一個(gè)溶解能力很強(qiáng)溶劑它與包氣帶及含水層中巖石(土)接觸時(shí),必定會(huì)發(fā)生溶解-沉淀反應(yīng)、氧化還原作用、界面反應(yīng)作用,這些反應(yīng)是控制地下水化學(xué)成份形成和演變主要作用。發(fā)生在地下水系統(tǒng)中水-巖相互作用普通為可逆反應(yīng)可逆反應(yīng)進(jìn)程符合化學(xué)平衡原理,能夠用質(zhì)量作用定律描述。第一節(jié)化學(xué)平衡3/55質(zhì)量作用定律化學(xué)反應(yīng)驅(qū)動(dòng)力與反應(yīng)物和生成物濃度相對(duì)大小關(guān)系相關(guān)發(fā)生在地下環(huán)境水-巖相互作用一樣受到質(zhì)量作用定律控制4/55理想溶液與活度A、理想溶液理想溶液:溶液中離子之間或分子之間沒有相互作用。地下水是一個(gè)真實(shí)溶液,不是理想溶液;水中離子(或分子之間)存在各種相互作用,包含相互碰撞及靜電引力作用。作用結(jié)果是,化學(xué)反應(yīng)相對(duì)減緩,一部分離子在反應(yīng)中不起作用了。所以,假如依然用水中各組分實(shí)測(cè)濃度進(jìn)行化學(xué)計(jì)算,就會(huì)產(chǎn)生一定程度偏差。為了確保計(jì)算準(zhǔn)確程度,就必須對(duì)水中組分實(shí)測(cè)濃度加以校正,校正后濃度稱為校正濃度,也就是活度。質(zhì)量作用定律中,濃度是以活度表示?;疃仁钦鎸?shí)濃度(實(shí)測(cè)濃度)函數(shù),普通情況下,活度小于實(shí)測(cè)濃度。5/55理想溶液與活度A、理想溶液活度與實(shí)測(cè)濃度函數(shù)表示式為:a=γm
式中m為實(shí)測(cè)濃度(mol/L);
γ為活度系數(shù),其單位是實(shí)測(cè)濃度倒數(shù)(L/mol),a為活度,無量綱。不過,在實(shí)際應(yīng)用中,a和m單位相同,均為mol/L,
γ為無量綱系數(shù)?;疃认禂?shù)隨水中溶解固體(即礦化度)增加而減小,普通都小于1。當(dāng)水中溶解固體(TDS)很低時(shí),r趨近于1,活度趨近于實(shí)測(cè)濃度。分子(包含水分子)和不帶電離子正確活度系數(shù)為1。在化學(xué)平衡計(jì)算中,要求固體和純液體活度為1。6/55B、活度系數(shù)公式在水文地球化學(xué)研究中,應(yīng)用最普遍活度系數(shù)計(jì)算公式是迪拜-休克爾(Debye-Huckel)方程:式中:r為活度系數(shù);Z為離子電荷數(shù);I為離子強(qiáng)度(mol/L);A和B為取決于水介電常數(shù)、密度和溫度常數(shù);a是與離子水化半徑相關(guān)常數(shù)。當(dāng)I<0.1時(shí),該方程準(zhǔn)確性很高離子強(qiáng)度I計(jì)算公式:式中:I為離子強(qiáng)度(mol/L);Zi為i離子電荷數(shù);mi為i離子濃度(mol/L)。7/55對(duì)于TDS高(I大于0.1mol/L)咸地下水、污水來說,迪拜-休克爾方程就不適用了。為此,戴維斯提出了擴(kuò)大迪拜-休克爾方程,也稱為戴維斯(Davies)方程:
與迪拜-休克爾方程相比,它增加了校正參數(shù)b,且式中a值與迪拜-休克爾方程式中a值不一樣。方程應(yīng)用范圍是I<0.5mol/L。B、活度系數(shù)公式8/55在溫度一定時(shí),K為常數(shù),固體BaSO4“活度”為1,所以:[Ba2+][SO42-]=Ksp
Ksp稱為溶度積常數(shù)(SolubilityProductConstant)。Ksp隨溫度而改變,比如BaSO4溶度積,298K時(shí)Ksp=1.08×10-10;323K時(shí)Ksp=1.98×10-10。可知BaSO4Ksp隨溫度升高而稍增大。
溶度積常數(shù)
溶度積常數(shù):即難溶鹽平衡常數(shù)以BaSO4溶解與沉淀過程為例說明BaSO4=Ba2++
SO42-9/55離子活度積(IAP)和飽和指數(shù)(SI)離子活度積(IAP)為水溶液中組成某難溶鹽類陰、陽離子含量之乘積(并不特指反應(yīng)到達(dá)平衡時(shí)刻)與溶度積和離子活度積相關(guān)概念——飽和指數(shù):SI=IAP/Ksp普通為:SI=lg(IAP/Ksp)用SI可判斷反應(yīng)方向與進(jìn)程SI<0時(shí),水溶液不飽和SI>0時(shí),水溶液過飽和SI=0時(shí),水溶液處于溶解平衡狀態(tài)10/55仍以BaSO4溶解與沉淀過程為例說明:
BaSO4(固)==Ba2++SO42-SI<0時(shí),BaSO4溶解速度大于沉淀速度,溶液處于未飽和狀態(tài);SI>0時(shí),BaSO4沉淀速度大于溶解速度,BaSO4溶液處于過飽和狀態(tài);SI=0時(shí),BaSO4沉淀速度等于溶解速度,溶解過程和沉淀過程到達(dá)平衡,溶液為飽和溶液。11/55以SI值判斷礦物溶解是比較可靠而用SI值判斷礦物沉淀可能不甚可靠因?yàn)橛行┑V物,尤其是白云石和許多硅酸鹽礦物,盡管SI值為比較大正值,處于過飽和狀態(tài)時(shí),也可能不產(chǎn)生沉淀。比如,即使海水與白云石處于過飽和狀態(tài),但無沉淀趨勢(shì)。產(chǎn)生這種情況化學(xué)機(jī)理比較復(fù)雜,與化學(xué)動(dòng)力學(xué)等有很大關(guān)系。普通來說,依據(jù)SI值判斷水與巖石、礦物反應(yīng)狀態(tài),對(duì)于地下淡水來說,還是很有用飽和指數(shù)應(yīng)用12/55溶度積常數(shù)和溶解度
溶解度:在給定溫度和壓力下,溶液中某溶解物到達(dá)溶解平衡時(shí)總量嚴(yán)格說來,物質(zhì)溶解度只有大小之分,沒有在水中絕對(duì)不溶解物質(zhì)。習(xí)慣上把溶解度小于0.01g/100g水物質(zhì)叫做“難溶物”13/55溶度積常數(shù)值可用來預(yù)計(jì)和比較難溶電解質(zhì)溶解度大小:AB型化合物:AB(固)=A++B-平衡時(shí):[A+]=[B-]=S;Ksp=[A+][B-]=S2AB2或A2B型化合物:AB2(固)=A2++2B-Ksp=[A2+][B-]2=S·(2S)2=4S3AB3型化合物:AB3(固)=A3++3B-
Ksp=[A3+][B-]3=27s4由上述關(guān)系可知,相同類型難溶電解質(zhì)(比如同是AB型或AB2型)相比,溶度積越小,溶解度(以摩爾濃度表示)也越小。
溶解度(以S表示;單位:mol/L)和溶度積定量關(guān)系14/55仍以BaSO4為例加以說明假如在飽和BaSO4溶液中加KNO3,KNO3就完全電離為K+和NO3-離子,結(jié)果使溶液中離子總數(shù)目增加,因?yàn)镾O42-和Ba2+被眾多異號(hào)離子(K+、NO3-)所包圍,其活動(dòng)性有所降低。這么,Ba2+和SO42-有效濃度降低,促使下面溶解平衡被打破,并向右移動(dòng):BaSO4(固)==Ba2++SO4結(jié)果為BaSO4溶解度增加,直至上述溶解反應(yīng)到達(dá)平衡為止,這時(shí)Ksp值變大了。這種因加入強(qiáng)電解質(zhì)而使物質(zhì)溶解度增大效應(yīng)也叫做鹽效應(yīng)。假如加入可溶性強(qiáng)電解質(zhì)濃度很小,比如溶液離子強(qiáng)度值<10-3mol/L,則能夠不考慮鹽效應(yīng)對(duì)難溶性強(qiáng)電解質(zhì)Ksp值影響。鹽效應(yīng)15/55一個(gè)礦物溶解于水中,如水溶液中已經(jīng)有或加入了某種離子與該礦物溶解后產(chǎn)生離子相同,則礦物溶解度將降低。仍以BaSO4為例加以說明:假如在飽和BaSO4溶液中加BaCl2,Ba2+濃度將上升。這么,Ba2+和SO42-離子積將大于活度積,促使下面溶解-沉淀平衡被打破,并向左移動(dòng):BaSO4(固)==Ba2++SO4結(jié)果為BaSO4溶解度減小,直至上述沉淀反應(yīng)到達(dá)平衡為止。這種因加入相同離子而使物質(zhì)溶解度減小效應(yīng)也叫做同離子效應(yīng)。如水溶液中同時(shí)存在同離子效應(yīng)與鹽效應(yīng),前者對(duì)溶解度影響要大得多。同離子效應(yīng)16/55熱力學(xué)體系性質(zhì)、狀態(tài)體系和環(huán)境在熱力學(xué)中,被研究對(duì)象稱為熱力學(xué)體系,簡稱體系體系以外、與體系相關(guān)聯(lián)其它物體稱為環(huán)境或外界一杯水、一個(gè)地質(zhì)露頭、一個(gè)地下水系統(tǒng)都可作為一個(gè)體系封閉體系與環(huán)境之間只有能量交換而無物質(zhì)交換體系開放體系與環(huán)境之間現(xiàn)有能量交換又有物質(zhì)交換體系孤立體系與環(huán)境之間能量交換和物質(zhì)交換二者全無體系在獲取化學(xué)反應(yīng)平衡常數(shù)時(shí)所用到化學(xué)熱力學(xué)知識(shí)17/55當(dāng)體系各種性質(zhì)含有確定數(shù)值時(shí),就稱該體系處于一定狀態(tài)。假如這些性質(zhì)中一個(gè)或多個(gè)發(fā)生了改變,就意味著體系狀態(tài)發(fā)生了改變。也就是說,熱力學(xué)中用體系性質(zhì)來確定或描述體系狀態(tài)和狀態(tài)改變。反之,如體系狀態(tài)確定了,體系一切性質(zhì)也就完全確定了。因?yàn)闆Q定體系狀態(tài)這些性質(zhì)同體系狀態(tài)之間有著這么依從關(guān)系,所以又把體系這些性質(zhì)稱狀態(tài)性質(zhì)或狀態(tài)函數(shù)。體系溫度、壓力、體積、密度、電位、折光率、粘度、自由能……等等,都是狀態(tài)函數(shù)。狀態(tài)和狀態(tài)函數(shù)18/55體系抵達(dá)某一狀態(tài)后,若不再隨時(shí)間改變,則稱體系處于熱力學(xué)平衡狀態(tài),簡稱平衡狀態(tài)。處于平衡狀態(tài)時(shí),體系各種性質(zhì)不隨時(shí)間改變,都含有確定值。但從微觀來看,分子、原子、電子等仍處于不停運(yùn)動(dòng)之中。所以,平衡是動(dòng)態(tài)。平衡必須在一定條件下才能保持,所以它又是相正確和暫時(shí)。平衡狀態(tài)19/55化學(xué)反應(yīng)體系處于平衡狀態(tài)三個(gè)條件力學(xué)平衡條件
體系處于平衡狀態(tài)時(shí),體系壓力必須不隨時(shí)間改變,體系內(nèi)各部分壓力必須處處相等若器壁不是剛性,除了體系內(nèi)部壓力必須處處均勻外,還必須使體系壓力與外界(環(huán)境)壓力保持相等熱平衡條件
體系處于平衡狀態(tài)時(shí)必須保持本身溫度不變,體系內(nèi)部溫度亦必須處處均勻。若體系與環(huán)境之間未隔以絕熱壁,還應(yīng)使體系與環(huán)境溫度相等20/55化學(xué)平衡條件
體系處于平衡狀態(tài)時(shí)還必須滿足化學(xué)平衡條件。滿足化學(xué)平衡條件體系,在其內(nèi)部應(yīng)無化學(xué)反應(yīng)發(fā)生,或雖有化學(xué)反應(yīng)發(fā)生,但其正、逆反應(yīng)進(jìn)行速度相等判斷化學(xué)反應(yīng)是否已達(dá)平衡,可每隔一段時(shí)間從體系中取樣分析,若歷次測(cè)定濃度不變,就說明體系已抵達(dá)了平衡狀態(tài)。熱力學(xué)體系慣用溫度、壓力和物質(zhì)化學(xué)組成(濃度)這三種狀態(tài)參數(shù)來表述,當(dāng)這三種狀態(tài)參數(shù)都保持固定不變時(shí),該體系抵達(dá)熱力學(xué)平衡狀態(tài),一旦在外界作用下使某一狀態(tài)參數(shù)發(fā)生改變,平衡就遭破壞。熱力學(xué)慣用“標(biāo)準(zhǔn)狀態(tài)”一詞,是指溫度為298.15K(25℃)、壓力為一巴狀態(tài)?;瘜W(xué)反應(yīng)體系處于平衡狀態(tài)三個(gè)條件21/55焓是系統(tǒng)狀態(tài)函數(shù),它指一個(gè)化學(xué)反應(yīng)向環(huán)境提供熱量總值,以符號(hào)H表示,ΔH指一個(gè)反應(yīng)焓改變。在標(biāo)準(zhǔn)狀態(tài)下,最穩(wěn)定單質(zhì)生成1摩爾純物質(zhì)時(shí)焓改變,稱為標(biāo)準(zhǔn)生成焓,以ΔHf表示比如:水ΔHf=285.8kJ/mo1,就是說,在標(biāo)準(zhǔn)狀態(tài)下,lmolH2和l/2molO2生成1molH2O時(shí)所生成熱量為285.8kJ焓可作為化學(xué)反應(yīng)熱效應(yīng)指標(biāo),化學(xué)反應(yīng)熱效應(yīng)是指反應(yīng)前后生成物和反應(yīng)物標(biāo)準(zhǔn)生成焓差值,熱力學(xué)上稱這個(gè)差值為反應(yīng)標(biāo)準(zhǔn)焓改變,以ΔHr表示。其計(jì)算方法以下:ΔHr=ΣΔHf(生成物)—ΣΔHf(反應(yīng)物)ΔHr為正值,屬吸熱反應(yīng);ΔHr為負(fù)值,屬放熱反應(yīng)焓22/55CaCO3溶解:CaCO3=Ca2++CO32-ΔHr=ΔHCa+ΔHCO3-ΔHCaCO3
=(-542.83)+(-677.1)-(-1207.4)=-12.53kJ/molCaCO3沉淀:Ca2++CO32-=CaCO3ΔHr=ΔHCaCO3
-ΔHCa-ΔHCO3
=(-1207.4)-(-542.83)-(-677.1)=12.53kJ/molCaCO3溶解和沉淀反應(yīng)上述計(jì)算說明,CaCO3溶解,ΔHr為負(fù)值,屬放熱反應(yīng);CaCO3沉淀,ΔHr為正值,屬吸熱反應(yīng)。23/55熱力學(xué)中一個(gè)狀態(tài)函數(shù),也稱為吉布斯自由能。在熱力學(xué)中,自由能含義是指一個(gè)反應(yīng)在恒溫恒壓下所能做最大有用功,以符號(hào)“G”表示。ΔG是指一個(gè)反應(yīng)自由能改變。在標(biāo)準(zhǔn)狀態(tài)下,最穩(wěn)定單質(zhì)生成1摩爾純物質(zhì)時(shí)自由能改變,稱為“標(biāo)準(zhǔn)生成自由能”,以“ΔGf”表示。在標(biāo)準(zhǔn)狀態(tài)下,某一反應(yīng)自由能改變稱為“反應(yīng)標(biāo)準(zhǔn)自由能改變”,以“ΔGr”表示,其計(jì)算方法為ΔGr=ΔGf(生成物)-ΔGf(反應(yīng)物)
化學(xué)反應(yīng)中驅(qū)動(dòng)力,普通用自由能改變來代表。在恒溫恒壓條件下自由能判據(jù)為:自由能24/552、自由能與化學(xué)平衡依據(jù)化學(xué)熱力學(xué)原理,可推導(dǎo)出反應(yīng)標(biāo)準(zhǔn)自由能改變與平衡常數(shù)關(guān)系式:ΔGr=-RTlnK式中ΔGr為反應(yīng)標(biāo)準(zhǔn)自由能改變(kJ/mol);R為氣體常數(shù)(0.008314kJ/mol);T為絕對(duì)溫度;K為平衡常數(shù)在標(biāo)準(zhǔn)狀態(tài)下,T=298.15K(T=25℃+273.15),將R和T值代入上式,并轉(zhuǎn)換為以10為底對(duì)數(shù),則LgK=-0.175ΔGr(kJ/mol)只要從文件中能查到反應(yīng)中全部組分ΔGf值,即可算得標(biāo)準(zhǔn)狀態(tài)下ΔGr,進(jìn)而求得平衡常數(shù)K25/55范特霍夫式用于求取標(biāo)準(zhǔn)狀態(tài)以外情況下K值原因:反應(yīng)自由能改變隨溫度和壓力不一樣改變顯著;但反應(yīng)標(biāo)準(zhǔn)焓改變與溫度和壓力關(guān)系不大;地殼淺部幾百米內(nèi),流體壓力對(duì)平衡常數(shù)K影響極小,可忽略不計(jì);所以,對(duì)該范圍內(nèi)水文地球化學(xué)反應(yīng),平衡常數(shù)只與反應(yīng)溫度相關(guān),可經(jīng)過反應(yīng)標(biāo)準(zhǔn)焓改變求得。26/55已知白云石在標(biāo)準(zhǔn)狀態(tài)下溶度積常數(shù)為10-17,試求白云石在5℃下溶度積常數(shù)。范特霍夫式:R=0.008314kJ/mol課堂作業(yè)2:27/55VerysoonafterthepublicationoftheDebye-Hückeltheory,itwasrealizedthatthetheorydidnotfitexperimentalmeasurementsofactivitycoefficientsformanyelectrolytes,especiallyoneswithconstituentionsofavalenceoftwoormore.Bjerrum,in1926,postulatedtheformationofionpairsinsolutiontoaccountforthesedeviations.Forexample,foradivalentcationAandadivalentanionBinsolution,hesuggestedthatareactionoftheform:takesplacethatwouldbedescribedbyanequilibriumconstantexpression:IonPairingandComplexing:Introduction28/55HereasonedthattheformationoftheionpairAX0wouldaccountfortheobservedlowervaluesformeasuredactivitycoefficientvaluesascomparedtopredictedvalues.Associationofionsintopairsseemsreasonablebecausetwoionsofoppositechargeinsolutionexertanattractiveforceforeachotherinsolution.AlthoughionpairingdoesoccurinaqueoussolutionandcontributesinamajorwaytothebreakdownintheDebye-Hückelequation,theextentofionpairinginwaterismuchlowercomparedtomostothersolvents.Thisisprincipallyduetotheveryhighdielectricconstantofwater.IonPairingandComplexing:Introduction29/55Intermsofthebehaviorofionsinsolution,asolventofhighdielectricconstanttendstopreventionsofoppositechargefrompairingupcomparedtoaoneoflowdielectricconstant.Becauseofitshighdielectricconstant,waterisveryeffectiveatkeepingionsapartinsolution.Nevertheless,ionpairingstilloccursinaqueoussolutions.IonPairingandComplexing:Introduction30/55Ifastrictlyelectrostaticmodelofinterionattractionisapplied,thetendencyofaniontoattractanionofoppositechargeinsolutionwouldincreasewiththefieldstrengthoftheion,i.e.itscharge/surfacearearatio.Thushigher-chargedcationsshouldionpairtoagreaterextentwithagivenanionthanlower-chargedcations.Forasuiteofcationsofthesamecharge,thesmallestwouldmostlikelypairwithagivenanion.Butwhatradiusisselectedtomakesuchacomparison—thecation’scrystallographicionicradiusoritshydratedradius?Factorsinfluencingthedegreeofionassociation31/55Toanswerthis,adistinctionmustbemadebetweenoutersphereandinnersphereionpairsoralternatively,solvent-separatedvscontactionpairs.Factorsinfluencingthedegreeofionassociation32/55Theionsinoutersphereionpairsremainseparatedbysolventmoleculesinsolution.Soitistheirhydratedradiithatdictatetheireffectivefieldstrengthsandconsequentlytheirprobabilitytoformionpairs.Thebicarbonateionpairswithalkaliearthmetalcationsareexamplesofthistypeofbehavior.Examinethefollowingdissociationconstantsfortheseionpairs,i.e.,forthereaction:Factorsinfluencingthedegreeofionassociation33/55Ba2+ismoreeffectiveatpairingwithHCO3?insolutionthananyoftheotheralkaliearthmetalionsbecauseithasthesmallesthydratedradius.Ontheotherhand,ifthedissociationconstantsofthesesamemetalionswithrespecttohydroxideionpairformationareexamined,theexactoppositetrendisfound.FactorsinfluencingthedegreeofionassociationDissociationconstantsforbicarbonateionpairsat25oCDissociationconstantsforhydroxideionpairsat25oC34/55Rememberingthatthesehydroxide‘ionpairs’arereallyjustthefirsthydrolysisproductsofthemetalions,thepairedhydroxideionismerelyawatermoleculeindirectcontactwiththemetalionthathashadoneofitshydrogenionsejectedintothebulksolution.Thus,becauseofthedirectcontact,thelikelihoodforhydroxideionpairingisdictatedbythecrystallographicradiusofthecation,notthehydratedradius.Itisnotjusthydroxideions,however,thatexhibitatendencyforinnersphereassociationwithmetalcations.Manyotheranionsdothisaswell.Innersphereionassociationisgenerallyreferredtoascomplexingratherthanionpairing.Factorsinfluencingthedegreeofionassociation35/55Sometimes,morecomplicatedtrendsofionpairdissociationconstantsareobservedforarelatedgroupofcationswithasingleanion.Examinethefollowinglistofdissociationconstantsforthealkalimetalsulfateionpairs.Thevaluesgothroughamaximumwithincreasingcrystallographicradius.ThisindicatesatendencytowardsamoreinnerspheretypeofionassociationgoingdowntheperiodictablefromLi+toCs+ion.Factorsinfluencingthedegreeofionassociation36/55Someoftheimportantionpairsinnaturalwatersaregiveninthetablebelowalongwiththeirdissociationconstantsat25oC.Dissociationconstantsforionpairsorcomplexesimportantinnaturalwatersat25oCFactorsinfluencingthedegreeofionassociation37/55Notes:Cl?doesnotcomplexappreciablywithanyalkalioralkaliearthmetalcation.Cl?doescomplex,however,withtransitionandactinidemetalcations—elementssuchasFe,Mn,Cd,Pb,CuandZn.Temperaturedataonionpairandcomplexdissociationconstantsareoftenscarce.Dissociationconstantdataforcarbonatecomplexeswithtransitionmetalsandactinidesarealsoscarce.Factorsinfluencingthedegreeofionassociation38/55Theprincipaldifferencebetweenanionpairandacomplexisthattheconstituentionsofanionpairaresolvent-separatedinsolutionwhereastheconstituentionsofacomplexareindirectcontactorcoordinatedtoeachother.Strongcovalentbondingoftenexistsbetweentheconstituentionsofacomplexwhereasinanionpairthebondingislargelyelectrostatic.Asaresultofthisdistinction,manyofthepropertiesofthesespeciesaredifferent.However,itisoftennotpossibletomakeaclearcutdistinctionbetweenwhatisacomplexandwhatisanionpair.Acompletegradationexistsfromoneendmembertotheotherinsolution.DistinctionbetweenIonPairsandComplexes39/55Confiningthediscussiontoendmembers,thekineticsofcomplexformationareslowcomparedtoionpairformation.Whereasreactiontimestoformanionpairortodissociateitaremeasuredontheorderofmillionthsofasecond,complexreactionscanrequiremuchlongertimetoattainequilibrium.Forananion(theligandinacomplex)tocomplexwithacation,ithastoreplaceoneofthewatermoleculesdirectlycoordinatedtothecation.Dependinguponhoweffectivelythiswatermoleculeisbondedtothecation,thereactionmayproceedslowlyrequiringmanyminutesorevenmanyhourstoreachequilibrium.DistinctionbetweenIonPairsandComplexes40/55Forexample,thehalf-lifefortheexchangeofaH2OmoleculewithinthefirsthydrationsheathofCr3+ionis40h—unusuallylongcomparedtoothertrivalentmetalcations.Consequently,theattainmentofequilibriumbetweenCr3+andthechromiumaminecomplexCrNH33+uponadditionofammoniatoaCr3+-containingsolutionwillrequireatleastseveraldays.DistinctionbetweenIonPairsandComplexes41/55Theeffectoftemperatureonthestabilityofionpairsandcomplexesisalsodifferent.Anincreaseintemperaturegenerallyresultsinincreasedionpairformation,butcomplexesareoftendestabilizedwithanincreaseintemperature.Thisreflectsastrongexothermiccharactertotheenthalpyforthedissociationreactionoftheionpairinsolutionasopposedtoanoftenendothermiccharactertotheenthalpyofreactionforcomplexdissociation.DistinctionbetweenIonPairsandComplexes42/55Theenthalpyforthereaction:isrelatedtothevariationoftheequilibriumconstantwithtemperaturethroughtheVan’tHoffequation:Forionpairdissociation,ΔHRisnegativeandKforthedissociationreactiondecreaseswithincreasingtemperature,i.e.,greaterformationofAX0athighertemperature.Thereverseisoftenfoundforcomplexes.DistinctionbetweenIonPairsandComplexes43/55Someenthalpyandentropychangesforionpairandcomplexdissociationreactionsaregivenintheaccompanyingtable.DistinctionbetweenIonPairsandComplexesDissociationreactionenthalpyandentropychangesforvariousionpairsandcomplexesat25oC44/55Thistendencyforgreaterionpairformationwithtemperatureandlesscomplexformationcanberationalizedconceptuallyinthefollowingmanner.Complexescanbethoughtofasionstightlybondedtoeachother.Increasedthermalvibrationsathighertemperaturestendtobreaktheionsapart.Bycontrast,ionpairsareheldtogetherbyelectrostaticforcesthatdevelopasionsofoppositechargeapproacheachotherinsolution.Withanincreaseintemperature,morecloseencountersofionsofoppositechargeoccurandtheprobabilityfortheformationofionpairsincreases.DistinctionbetweenIonPairsandComplexes45/55Thethermodynamicreasonfortheoftenpositiveenthalpiesforthedissociationreactionsofcomplexesisthatmuchgreaterenergy(heat)isrequiredtobreakapartthetightlybondedconstituentionsofthecomplexcomparedtotheionpair.Withoutthiscomponentofheat,theenthalpyofacomplexorionpairdissociationreactionwouldbenegative(orexothermic)becauseastheconstituentionsbreakapart,somewatermoleculesfromsolutionareaddedtothehydrationsheathsoftheionsandmuchoftheirrotationalandvibrationalenergyisreleased.DistinctionbetweenIonPairsandComplexes46/55Onefeatureofcomplexformationisthatmultiplespeciesmayformbetweenacationandligand.Ligandionsmayreplaceone,two,threeormorewatermoleculesofthecation’shydrationsheath.Thisisnotthecaseforionpairformation.Expressedasstepwiseformationconstants,suchsequentialligandcomplexationreactionswouldbewrittenas:Stepwisecomplexformation47/55Anotherwayofexpressingsequentialcomplexformationisbyoverallreactions.InsteadofusingKitorefertotheequilibriumconstantforthesereactions,theconventionistousethetermβi.Therelationbetweenthetwosetsofreactionconstantsis:Or:Stepwisecomplexformation48/55logKivaluesforsequentialmetal-ligandcomplexreactionsgenerallydecreaseinvaluewhereasthevaluesforlogβiincrease.Theexpressionsforcadmiumcyanidecomplexformation,forexample,aregiveninthefollowingtable.Stepwisecomplexformation49/55Distributiondiagramscanbeconstructedforsequentialcomplexformationinmuchthesamewayastheyaredrawnforsequentialhydrolysisproducts.Examinethefollowingdistributiondiagramforcadmiumcyanidecomplexes.Stepwisecomplexformation50/55Metalionsandligandscanbeclassifiedaseithersoftorhardonthebasisoftheirelectronconfigurations.Softionsusuallyhavelowpositivechargeorhighnegativecharge;largeradii;higheratomicnumbers;andincompleteelectronshellconfigurations.Hardionstendtohavehighpositivechargeorlownegativecharge;smallradii;loweratomicnumbers;andcompleteorhalf-filledelectronshellconfiguration
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)新教師的培訓(xùn)工作計(jì)劃范文
- 2025初三新學(xué)期個(gè)人學(xué)習(xí)計(jì)劃書2
- 幼兒園中秋節(jié)活動(dòng)計(jì)劃
- 公司業(yè)務(wù)員個(gè)人工作回顧及發(fā)展計(jì)劃
- 2025稅務(wù)部門年終工作計(jì)劃
- 門五金商業(yè)計(jì)劃書
- “工會(huì)計(jì)劃學(xué)?!惫?huì)工作計(jì)劃
- 2025語文一年級(jí)下冊(cè)學(xué)期教學(xué)計(jì)劃
- 《地震地質(zhì)基礎(chǔ)》課件
- 《地鐵暗挖施工工法》課件
- KYN28-12A開關(guān)柜技術(shù)規(guī)范書
- 化療藥物滲漏PDCA循環(huán)分析
- 國開《小學(xué)數(shù)學(xué)教學(xué)研究》形考任務(wù)二
- 維修方案模板
- 冶金行業(yè)特殊工種有哪些崗位
- 初中部綜合素質(zhì)評(píng)價(jià)實(shí)施方案范本(三篇)
- 2023湖南省永州市七年級(jí)上學(xué)期語文期末試卷及答案
- 仲夏夜之夢(mèng)-中英對(duì)照
- 廣州市本級(jí)政府投資項(xiàng)目估算編制指引
- 課堂觀察量表
- (現(xiàn)行版)江蘇省建筑與裝飾工程計(jì)價(jià)定額說明及計(jì)算規(guī)則
評(píng)論
0/150
提交評(píng)論