




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024年初二上冊數(shù)學(xué)期末考試專項復(fù)習(xí)一次函數(shù)與二元一次方程(基礎(chǔ))【學(xué)習(xí)目標(biāo)】1.能用函數(shù)觀點看二元一次方程,能用辨證的觀點認(rèn)識一次函數(shù)與二元一次方程的區(qū)別與聯(lián)系.2.在解決簡單的一次函數(shù)的問題過程中,建立數(shù)形結(jié)合的思想及轉(zhuǎn)化的思想.【要點梳理】要點一、一次函數(shù)與二元一次方程一次函數(shù)的圖像上任意一點的坐標(biāo)都是二元一次方程的解;以二元一次方程的解為坐標(biāo)的點都在一次函數(shù)的圖像上.要點二、一次函數(shù)與二元一次方程組在同一直角坐標(biāo)系中,兩個一次函數(shù)圖象的交點坐標(biāo)就是相應(yīng)的二元一次方程組的解.反過來,以二元一次方程組的解為坐標(biāo)的點一定是相應(yīng)的兩個一次函數(shù)的圖象的交點.如一次函數(shù)與圖象的交點為(3,-2),則就是二元一次方程組的解.用一次函數(shù)的圖像求二元一次方程組的解的方法稱為二元一次方程組的圖像解法.要點詮釋:1.當(dāng)二元一次方程組無解時,相應(yīng)的兩個一次函數(shù)在直角坐標(biāo)系中的直線就沒有交點,則兩個一次函數(shù)的直線就平行.反過來,當(dāng)兩個一次函數(shù)直線平行時,相應(yīng)的二元一次方程組就無解.如二元一次方程組無解,則一次函數(shù)與的圖象就平行,反之也成立.
2.當(dāng)二元一次方程組有無數(shù)解時,則相應(yīng)的兩個一次函數(shù)在直角坐標(biāo)系中的直線重合,反之也成立.要點三、方程組解的幾何意義1.方程組的解的幾何意義:方程組的解對應(yīng)兩個函數(shù)的圖象的交點坐標(biāo).2.根據(jù)坐標(biāo)系中兩個函數(shù)圖象的位置關(guān)系,可以看出對應(yīng)的方程組的解的情況:根據(jù)交點的個數(shù),看出方程組的解的個數(shù);根據(jù)交點的坐標(biāo),求出(或近似估計出)方程組的解.3.對于一個復(fù)雜方程組,特別是變化不定的方程組,用圖象法可以很容易觀察出它的解的個數(shù).【典型例題】類型一、一次函數(shù)與二元一次方程 1、下面四條直線,其中直線上每個點的坐標(biāo)都是二元一次方程的解是()A.B.C.D.【思路點撥】根據(jù)兩點確定一條直線,當(dāng)=0,求出的值,再利用=0,求出的值,即可得出一次函數(shù)圖象與坐標(biāo)軸交點,即可得出圖象.【答案】C.【解析】解:∵,
∴=-1,
∴當(dāng)=0,=-1,當(dāng)=0,=2,
∴一次函數(shù)=-1,與y軸交于點(0,-1),與x軸交于點(2,0),
即可得出C符合要求,
【總結(jié)升華】此題主要考查了一次函數(shù)與二元一次方程的關(guān)系,將方程轉(zhuǎn)化為函數(shù)關(guān)系進(jìn)而得出與坐標(biāo)軸交點坐標(biāo)是解題關(guān)鍵.舉一反三:【變式】把方程化成一次函數(shù)的形式:=_________.【答案】.類型二、一次函數(shù)與二元一次方程組2、(2016?臨清市二模)如圖,已知函數(shù)y=ax+b和y=kx的圖象交于點P,則根據(jù)圖象可得,關(guān)于x、y的二元一次方程組的解是()A. B. C. D.【思路點撥】由圖可知:兩個一次函數(shù)的交點坐標(biāo)為(﹣3,1);那么交點坐標(biāo)同時滿足兩個函數(shù)的解析式,而所求的方程組正好是由兩個函數(shù)的解析式所構(gòu)成,因此兩函數(shù)的交點坐標(biāo)即為方程組的解.【答案】C.【解析】解:函數(shù)y=ax+b和y=kx的圖象交于點P(﹣3,1),即x=﹣3,y=1同時滿足兩個一次函數(shù)的解析式.所以關(guān)于x,y的方程組的解是.【總結(jié)升華】本題考查了一次函數(shù)與二元一次方程組,方程組的解就是使方程組中兩個方程同時成立的一對未知數(shù)的值,而這一對未知數(shù)的值也同時滿足兩個相應(yīng)的一次函數(shù)式,因此方程組的解就是兩個相應(yīng)的一次函數(shù)圖象的交點坐標(biāo).舉一反三:【變式】如圖,已知函數(shù)y=kx+b和y=kx的圖象交于點P,則根據(jù)圖象可得關(guān)于x,y的二元一次方程組的解是()A. B. C. D.【答案】B;解:函數(shù)y=kx+b和y=kx的圖象交于點P(﹣4,﹣2),即x=﹣4,y=﹣2同時滿足兩個一次函數(shù)的解析式.所以關(guān)于x,y的方程組的解是.故選:B.3、利用圖象解方程組.【思路點撥】首先計算出兩個一次函數(shù)與坐標(biāo)軸的交點,兩個函數(shù)圖象的交點就是方程組的解.【答案與解析】解:如圖所示:由圖象可得方程組的解為.【總結(jié)升華】此題主要考查了二元一次方程組與一次函數(shù)的關(guān)系,關(guān)鍵是掌握兩函數(shù)圖象的交點就是方程組的解.類型三、一次函數(shù)與二元一次方程的應(yīng)用4、曉東、小明在A、B兩地間運動,如圖所示,圖中的線段、分別表示曉東、小明離B地的距離(千米)與所用時間(小時)的關(guān)系.(1)根據(jù)圖形試說明曉東、小明的運動方向(2)試用文字說明:交點P所表示的實際意義.(3)試求出A、B兩地之間的距離.【思路點撥】(1)軸的量表示離B點的距離,從離B點距離的遠(yuǎn)近可以看出兩人的運動方向;(2)交點反映了兩人相遇時刻的情況;(3)需求直線的解析式,因為它過點(2.5,7.5),(4,0),利用待定系數(shù)法即可求出其解析式.然后令=0,求出此時的值即可.【答案與解析】解:(1)曉東從A向B運動,小明從B向A運動;(2)兩人同時出發(fā)相向而行2.5小時后在距離B地7.5處相遇;(3)設(shè)線段的解析式為,則由(4,0)、(2.5,7.5)在函數(shù)圖象上可求得,由=0時=20可知,A、B兩地相距20.【總結(jié)升華】仔細(xì)分析函數(shù)圖象,利用函數(shù)解析式解決問題.一次函數(shù)、一次方程和一元一次不等式(提高)【學(xué)習(xí)目標(biāo)】1.能用函數(shù)的觀點認(rèn)識一次函數(shù)、一次方程與一元一次不等式之間的聯(lián)系,能直觀地用圖形(在平面直角坐標(biāo)系中)來表示方程的解及不等式的解,建立數(shù)形結(jié)合的思想及轉(zhuǎn)化的思想.2.能運用一次函數(shù)的性質(zhì)解決簡單的不等式問題及實際問題.【要點梳理】要點一、一次函數(shù)與一元一次方程一次函數(shù)(≠0,為常數(shù)).當(dāng)函數(shù)=0時,就得到了一元一次方程,此時自變量的值就是方程=0的解.所以解一元一次方程就可以轉(zhuǎn)化為:當(dāng)某一個一次函數(shù)的值為0時,求相應(yīng)的自變量的值.
從圖象上看,這相當(dāng)于已知直線(≠0,為常數(shù)),確定它與軸交點的橫坐標(biāo)的值.要點二、一次函數(shù)與一元一次不等式由于任何一個一元一次不等式都可以轉(zhuǎn)化為>0或<0或≥0或≤0(、為常數(shù),≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)的值大于0(或小于0或大于等于0或小于等于0)時求相應(yīng)的自變量的取值范圍.要點詮釋:求關(guān)于的一元一次不等式>0(≠0)的解集,從“數(shù)”的角度看,就是為何值時,函數(shù)的值大于0?從“形”的角度看,確定直線在軸(即直線=0)上方部分的所有點的橫坐標(biāo)的范圍.要點三、一元一次方程與一元一次不等式我們已經(jīng)學(xué)過,利用不等式的性質(zhì)可以解得一個一元一次不等式的解集,這個不等式的解集的端點值就是我們把不等式中的不等號變?yōu)榈忍枙r對應(yīng)方程的解.要點四、如何確定兩個不等式的大小關(guān)系(≠,且)的解集的函數(shù)值大于的函數(shù)值時的自變量取值范圍直線在直線的上方對應(yīng)的點的橫坐標(biāo)范圍.【典型例題】類型一、一次函數(shù)與一元一次方程1、方程的解是=______,則函數(shù)在自變量等于_______時的函數(shù)值是8.【答案】2;2;【解析】解方程得到:.函數(shù)的函數(shù)值是8.即,即函數(shù)在自變量等于2時的函數(shù)值是8.【總結(jié)升華】本題主要考查了一元一次方程與一次函數(shù)的關(guān)系.任何一元一次方程都可以轉(zhuǎn)化為(,為常數(shù),≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線確定它與軸的交點的橫坐標(biāo)的值.舉一反三:【變式1】如圖,已知直線,則關(guān)于的方程的解=_________.【答案】4;提示:根據(jù)圖形知,當(dāng)=1時,=4,即時,=4.∴方程的解=4.【變式2】已知一次函數(shù)y=ax+b中,x和y的部分對應(yīng)值如表:x﹣2﹣101.523y642﹣1﹣2﹣4那么方程ax+b=0的解是.【答案】x=1;解:由一次函數(shù)y=ax+b,∵x=0時,y=2,x=2時,y=﹣2,∴,解得,∴一次函數(shù)解析式為y=﹣2x+2,∴方程ax+b=0變?yōu)椹?x+2=0,解得:x=1,故答案為:x=1.類型二、一次函數(shù)與一元一次不等式【高清課堂:393614一次函數(shù)與一元一次不等式,例1】2、已知一次函數(shù)的圖象過第一、二、四象限,且與軸交于點(2,0),則關(guān)于的不等式>0的解集為()A.<-1B.>-1C.>1D.<1【答案】A;【解析】∵一次函數(shù)的圖象過第一、二、四象限,∴>0,<0,把(2,0)代入解析式得:0=2+,解得:=-2,∵>0,∴,∴-1<,∴<-1,【總結(jié)升華】本題主要考查對一次函數(shù)與一元一次不等式的關(guān)系,一次函數(shù)的性質(zhì),一次函數(shù)圖象上點的坐標(biāo)特征,解一元一次不等式等的理解和掌握,能根據(jù)一次函數(shù)的性質(zhì)得出、的正負(fù),并正確地解不等式是解此題的關(guān)鍵.舉一反三:【變式】如圖,直線y=kx+b經(jīng)過A(3,1),B(﹣1,﹣3)兩點,則不等式x>kx+b>﹣3的解為.【答案】﹣1<x<3;解:將A(3,1),B(﹣1,﹣3)代入直線y=kx+b得,,解得,直線解析式為y=x﹣2,可得到不等式x>x﹣2>﹣3,解得﹣1<x<3,故答案為﹣1<x<3.3、(2016春?乳山市期末)如圖,直線y=kx+b分別與x軸、y軸交于點A(﹣2,0),B(0,3);直線y=1﹣mx分別與x軸交于點C,與直線AB交于點D,已知關(guān)于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分別求出k,b,m的值;(2)求S△ACD.【思路點撥】(1)首先利用待定系數(shù)法確定直線的解析式,然后根據(jù)關(guān)于x的不等式kx+b>1﹣mx的解集是x>﹣得到點D的橫坐標(biāo),進(jìn)而確定點D的坐標(biāo),再代入解析式求m的值.(2)收下確定直線與x軸的交點坐標(biāo),然后利用三角形的面積公式計算即可.【答案與解析】解:(1)∵直線y=kx+b分別與x軸、y軸交于點A(﹣2,0),B(0,3),,解得:k=,b=3,∴y=x+3∵關(guān)于x的不等式kx+b>1﹣mx的解集是x>﹣,∴點D的橫坐標(biāo)為﹣,將x=﹣代入y=x+3,得:y=,強(qiáng)x=﹣,y=代入y=1﹣mx,解得:m=1;(2)對于y=1﹣x,令y=0,得:x=1,∴點C的坐標(biāo)為(1,0),∴S△ACD=×[1﹣(﹣2)]×=.【總結(jié)升華】本題考查了一次函數(shù)與一元一次不等式的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用.解決此類問題關(guān)鍵是仔細(xì)觀察圖形,注意幾個關(guān)鍵點(交點、原點等),做到數(shù)形結(jié)合.舉一反三:【高清課堂:393614一次函數(shù)與一元一次不等式,例3】【變式】如圖所示,函數(shù)和的圖象相交于(-1,1),(2,2)兩點.當(dāng)時,的取值范圍是()(-1,1)(2,2)(-1,1)(2,2)xyOA.<-1B.—1<<2C.>2D.<-1或>2【答案】D;提示:反映在圖象上,是的圖象在的上方,這部分圖象自變量的取值范圍有兩部分,是<-1或>2.4、(2014春?通山縣月考)畫出函數(shù)y=﹣x+3的圖象,根據(jù)圖象回答下列問題:(1)求方程﹣x+3=0的解;(2)求不等式﹣x+3<0的解集;(3)當(dāng)x取何值時,y≥0.【思路點撥】利用兩點法畫出函數(shù)的圖象.(1)直線y=﹣x+3與x軸交點的橫坐標(biāo)即為方程﹣x+3=0的解;(2)直線y=﹣x+3下方的部分對應(yīng)的x的取值即為不等式﹣x+3<0的解集;(3)直線y=﹣x+3在x軸及其上方的部分對應(yīng)的x的取值即為所求.【答案與解析】解:函數(shù)圖象如下圖:(1)觀察圖象可知,方程﹣x+3=0的解為x=2;(2)觀察圖象可知,不等式﹣x+3<0的解集為x>2;(3)當(dāng)x≤2時,y≥0.【總結(jié)升華】本題考查的是一次函數(shù)的圖象與一元一次方程、一元一次不等式的關(guān)系,正確畫出函數(shù)的圖象是解答此題的關(guān)鍵.類型三、用一次函數(shù)的性質(zhì)解決不等式的實際問題5、某電信公司開設(shè)了甲、乙兩種市內(nèi)移動通信業(yè)務(wù),甲種使用者每月需繳15元月租費,然后通話每分鐘再付話費0.3元,乙種使用者不繳月租費,通話每分鐘付費0.6元,若一個月內(nèi)通話時間為分鐘,甲、乙兩種業(yè)務(wù)的費用分別為和元.(1)試分別寫出、與之間的函數(shù)關(guān)系式;(2)畫出、的圖象;(3)利用圖象回答,根據(jù)一個月的通話時間,你認(rèn)為選哪種通信業(yè)務(wù)更優(yōu)惠?【思路點撥】收費與通話時間有關(guān),分別寫成兩種收費方式的函數(shù)模型(建立函數(shù)關(guān)系式),然后再考慮自變量為何值時兩個函數(shù)值相等,從而做出選擇.【答案與解析】解:(1)根據(jù)題意可得:(≥0),(≥0).(2)利用兩點可畫(≥0)和(≥0)的圖象,如下圖所示.(3)由圖象可知:兩個函數(shù)的圖象交于點(50,30),這表示當(dāng)=50時,兩個函數(shù)的值都等于30.因此一個月內(nèi),通話時間為50分鐘.選哪一種通話業(yè)務(wù)都行,因為付費都是30元,當(dāng)一個月內(nèi)通話時間低于50分鐘時,選乙種業(yè)務(wù)更優(yōu)惠,當(dāng)一個月內(nèi)通話時間大于50分鐘時,選甲種業(yè)務(wù)更優(yōu)惠.【總結(jié)升華】解決這類問題首先根據(jù)題意確定函數(shù)解析式,然后在坐標(biāo)系內(nèi)畫出函數(shù),找到它們的交點,從而得函數(shù)值相等時的自變量的取值,然后根據(jù)這一取值就可作出正確的選擇.一次函數(shù)、一次方程和一元一次不等式(基礎(chǔ))【學(xué)習(xí)目標(biāo)】1.能用函數(shù)的觀點認(rèn)識一次函數(shù)、一次方程與一元一次不等式之間的聯(lián)系,能直觀地用圖形(在平面直角坐標(biāo)系中)來表示方程的解及不等式的解,建立數(shù)形結(jié)合的思想及轉(zhuǎn)化的思想.2.能運用一次函數(shù)的性質(zhì)解決簡單的不等式問題及實際問題.【要點梳理】要點一、一次函數(shù)與一元一次方程一次函數(shù)(≠0,為常數(shù)).當(dāng)函數(shù)=0時,就得到了一元一次方程,此時自變量的值就是方程=0的解.所以解一元一次方程就可以轉(zhuǎn)化為:當(dāng)某一個一次函數(shù)的值為0時,求相應(yīng)的自變量的值.
從圖象上看,這相當(dāng)于已知直線(≠0,為常數(shù)),確定它與軸交點的橫坐標(biāo)的值.要點二、一次函數(shù)與一元一次不等式由于任何一個一元一次不等式都可以轉(zhuǎn)化為>0或<0或≥0或≤0(、為常數(shù),≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)的值大于0(或小于0或大于等于0或小于等于0)時求相應(yīng)的自變量的取值范圍.要點詮釋:求關(guān)于的一元一次不等式>0(≠0)的解集,從“數(shù)”的角度看,就是為何值時,函數(shù)的值大于0?從“形”的角度看,確定直線在軸(即直線=0)上方部分的所有點的橫坐標(biāo)的范圍.要點三、一元一次方程與一元一次不等式我們已經(jīng)學(xué)過,利用不等式的性質(zhì)可以解得一個一元一次不等式的解集,這個不等式的解集的端點值就是我們把不等式中的不等號變?yōu)榈忍枙r對應(yīng)方程的解.要點四、如何確定兩個不等式的大小關(guān)系(≠,且)的解集的函數(shù)值大于的函數(shù)值時的自變量取值范圍直線在直線的上方對應(yīng)的點的橫坐標(biāo)范圍.【典型例題】類型一、一次函數(shù)與一元一次方程 1、若直線與軸交于(5,0)點,那么關(guān)于的方程的解為______.【答案】【解析】=0的解是直線與軸交點橫坐標(biāo).【總結(jié)升華】當(dāng)函數(shù)時,就得到了一元一次方程=0,此時自變量的值就是方程=0的解.舉一反三:【變式1】如圖,已知直線,則關(guān)于的方程的解=_________.【答案】4;提示:根據(jù)圖形知,當(dāng)=1時,=4,即時,=4.∴方程的解=4.【變式2】如圖,直線分別交軸和軸于點A、B,則關(guān)于的方程=0的解為_______.【答案】;提示:方程=0的解其實就是當(dāng)時一次函數(shù)與軸的交點橫坐標(biāo).由圖知:直線與軸交于點(-2,0),即當(dāng)=-2時,=0.類型二、一次函數(shù)與一元一次不等式 2、如圖,直線y=kx+b交坐標(biāo)軸于A(﹣3,0)、B(0,1)兩點,則不等式﹣kx﹣b<0的解集為()A.x>﹣3 B.x<﹣3 C.x>3 D.x<3【思路點撥】求﹣kx﹣b<0的解集,即為kx+b>0,就是求函數(shù)值大于0時,x的取值范圍.【答案】A;【解析】解:∵要求﹣kx﹣b<0的解集,即為求kx+b>0的解集,∴從圖象上可以看出等y>0時,x>﹣3.故選:A.【總結(jié)升華】本題考查了一次函數(shù)與不等式的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用.解決此類問題關(guān)鍵是仔細(xì)觀察圖形,注意幾個關(guān)鍵點(交點、原點等),做到數(shù)形結(jié)合.舉一反三:【高清課堂:393614一次函數(shù)與一元一次不等式,例2】【變式】如圖,直線與坐標(biāo)軸的兩個交點分別為A(2,0)和B(0,-3),則不等式+3≥0的解集是()A.≥0B.≤0C.≥2D.≤2【答案】A;提示:從圖象上知,直線的函數(shù)值隨的增大而增大,與軸的交點為B(0,-3),即當(dāng)=0時,=-3,所以當(dāng)≥0時,函數(shù)值≥-3.3、(2016春?瑞昌市期中)如圖,根據(jù)圖中信息解答下列問題:(1)關(guān)于x的不等式ax+b>0的解集是.(2)關(guān)于x的不等式mx+n<1的解集是.(3)當(dāng)x為何值時,y1≤y2?(4)當(dāng)x為何值時,0<y2<y1?【思路點撥】緊密結(jié)合圖象,根據(jù)直線與坐標(biāo)軸的交點來確定不等式的解集,從而判斷函數(shù)值的大小關(guān)系.【答案與解析】解:(1)∵直線y2=ax+b與x軸的交點是(4,0),∴當(dāng)x<4時,y2>0,即不等式ax+b>0的解集是x<4;故答案是:x<4;(2)∵直線y1=mx+n與y軸的交點是(0,1),∴當(dāng)x<0時,y1<1,即不等式mx+n<1的解集是x<0;.故答案是:x<0;(3)由一次函數(shù)的圖象知,兩條直線的交點坐標(biāo)是(2,18),當(dāng)函數(shù)y1的圖象在y2的下面時,有x≤2,所以當(dāng)x≤2時,y1≤y2;(4)如圖所示,當(dāng)2<x<4時,0<y2<y1.【總結(jié)升華】本題考查了一次函數(shù)與一元一次不等式,解答該類題目時,需要學(xué)生具備一定的讀圖能力,體現(xiàn)了數(shù)形結(jié)合的思想方法,準(zhǔn)確的確定出x的值,是解答本題的關(guān)鍵.舉一反三:【變式】直線:與直線:在同一平面直角坐標(biāo)系中的圖象如圖所示,則關(guān)于的不等式<的解集為()A.>1B.<1C.>-2D.<-2【答案】B;提示:與直線:在同一平面直角坐標(biāo)系中的交點是(1,-2),根據(jù)圖象得到<1時不等式<成立.4、畫出函數(shù)的圖象,并利用圖象求:(1)方程2+1=0的解;(2)不等式2+1≥0的解集;(3)當(dāng)≤3時,的取值范圍;(4)當(dāng)-3≤≤3時,的取值范圍.【思路點撥】可用兩點法先畫出函數(shù)的圖象,方程2+1=0的解從“數(shù)”看就是自變量取何值時,函數(shù)值是0,從“形”看方程2+1=0的解就相當(dāng)于確定直線與軸的交點,故圖象與軸交點的橫坐標(biāo)就是方程2+1=0的解.同理:圖象在軸上方所有點的橫坐標(biāo)的集合就構(gòu)成不等式2+1>0的解集.【答案與解析】解:列表:010在坐標(biāo)系內(nèi)描點(0,1)和,并過這兩點畫直線,即得函數(shù)的圖象.如圖所示.(1)由圖象可知:直線與x軸交點,∴方程2+1=0的解為;(2)由圖象可知:直線被軸在點分成兩部分,在點右側(cè),圖象在軸的上方.故不等式2+1≥0的解集為;(3)過點(0,3)作平行于軸的直線交直線于點M,過M點作軸的垂線,垂足為N.則N點坐標(biāo)為(1,0);從圖象上觀察,在點(1,0)的左側(cè),函數(shù)值≤3,則當(dāng)≤3時,自變量的取值范圍是≤1;(4)過(0,-3)作軸的平行線交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產(chǎn)隱患排查整改培訓(xùn)
- 屆深圳高級中學(xué)高三第二次模擬試題語文
- 基礎(chǔ)知識5 宣武期末語文測試練習(xí)題
- 高三語文試題分類匯編 標(biāo)點符合
- 開健身工作室心得
- 宜春精密制造項目申請報告
- 2024-2025學(xué)年高中語文第四單元文言文215勸學(xué)節(jié)選習(xí)題含解析粵教版必修4
- 2024-2025學(xué)年高中物理第7章分子動理論第2節(jié)分子的熱運動課后練習(xí)含解析新人教版選修3-3
- 中國煙氣分析儀行業(yè)發(fā)展趨勢預(yù)測及投資戰(zhàn)略咨詢報告
- 2024-2025學(xué)年高中生物第三章胚胎工程第二節(jié)胚胎工程學(xué)案浙科版選修3
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- 2024年濰坊工程職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 部編版一年級語文下冊全冊分層作業(yè)設(shè)計
- T∕ACSC 01-2022 輔助生殖醫(yī)學(xué)中心建設(shè)標(biāo)準(zhǔn)(高清最新版)
- 線性空間的定義與性質(zhì)
- 化妝品批生產(chǎn)記錄
- Excel數(shù)據(jù)透視表培訓(xùn)PPT課件
- 化工車間布置原則
- 硬筆書法紙(A3)
評論
0/150
提交評論