版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省南昌市蓮塘鎮(zhèn)第一中學(xué)2024年高考考前提分?jǐn)?shù)學(xué)仿真卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.2.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.333.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.兩圓和相外切,且,則的最大值為()A. B.9 C. D.15.函數(shù)的大致圖像為()A. B.C. D.6.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.7.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.8.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.9.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,10.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.11.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.12.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實(shí)數(shù),滿足不等式組,則的最小值為______.14.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長介于與之間的概率為__________.15.設(shè)集合,,則____________.16.展開式中的系數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.18.(12分)某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02419.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.21.(12分)已知橢圓的離心率為,且過點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).22.(10分)如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識(shí),考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.2、C【解析】
依次遞推求出得解.【詳解】n=1時(shí),,n=2時(shí),,n=3時(shí),,n=4時(shí),,n=5時(shí),.故選:C【點(diǎn)睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對這些知識(shí)的理解掌握水平.3、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點(diǎn)睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.4、A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.5、D【解析】
通過取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)椋?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.6、C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.8、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.9、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個(gè),成績不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.10、C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點(diǎn)睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.11、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.12、B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動(dòng)直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時(shí),取得最小值,且.【點(diǎn)睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題14、【解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.15、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因?yàn)?解得,即,則,故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查解一元二次不等式.16、30【解析】
先將問題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問題,利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的第項(xiàng),令的指數(shù)分別等于2,4,求出特定項(xiàng)的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項(xiàng)式展開式中的指數(shù)為2和4時(shí)的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點(diǎn)睛】本題考查利用二項(xiàng)式展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)的問題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達(dá)定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點(diǎn)睛】本題考查了極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)和普通方程的互化,以及參數(shù)方程的綜合知識(shí),結(jié)合等比數(shù)列,熟練運(yùn)用知識(shí),屬于較易題.18、(1);(2)列聯(lián)表見解析,有超過的把握認(rèn)為“晉級成功”與性別有關(guān);(3)分布列見解析,=3【解析】
(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計(jì)算晉級成功的人數(shù),填寫列聯(lián)表,計(jì)算觀測值,對照臨界值得出結(jié)論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機(jī)變量服從二項(xiàng)分布,計(jì)算對應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數(shù)為(人),填表如下:晉級成功晉級失敗合計(jì)男163450女94150合計(jì)2575100假設(shè)“晉級成功”與性別無關(guān),根據(jù)上表數(shù)據(jù)代入公式可得,所以有超過的把握認(rèn)為“晉級成功”與性別有關(guān);(3)由頻率分布直方圖知晉級失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機(jī)抽取1人進(jìn)行約談,這人晉級失敗的概率為0.75,所以可視為服從二項(xiàng)分布,即,,故,,,,.所以的分布列為:01234數(shù)學(xué)期望為.或().【點(diǎn)睛】本題考查了頻率分布直方圖和離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的應(yīng)用問題,屬于中檔題.若離散型隨機(jī)變量,則.19、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;(Ⅱ)可通過必要性探路,當(dāng)時(shí),由知,又由于,則,當(dāng),,結(jié)合零點(diǎn)存在定理可判斷必存在使得,得,,化簡得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;則.綜上,的最大值為3.【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題20、(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化簡得到直線的普通方程化為,,是以點(diǎn)為圓心,為半徑的圓,利用垂徑定理計(jì)算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點(diǎn)為圓心,為半徑的圓,設(shè)點(diǎn)到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因?yàn)?,所以,所?【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.21、(1);(2)【解析】
(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 影響農(nóng)村信用社發(fā)展的政策性障礙分析
- 輪椅車 第31部分 電動(dòng)輪椅車的鋰離子電池系統(tǒng)和充電器 要求和試驗(yàn)方法 征求意見稿
- 直播招商課件教學(xué)課件
- 金融培訓(xùn)課件教學(xué)課件
- 三年級數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)及答案集錦
- 維修水泵機(jī)組合同(2篇)
- 學(xué)習(xí)領(lǐng)會(huì)《新就業(yè)形態(tài)勞動(dòng)者權(quán)益協(xié)商指引》心得體會(huì)
- 南京航空航天大學(xué)《編譯原理》2022-2023學(xué)年第一學(xué)期期末試卷
- 發(fā)現(xiàn)問題說課稿
- 陽春市河朗鎮(zhèn)飲用水供水工程施工組織設(shè)計(jì)
- 【期中考后反思】《反躬自省,砥礪奮進(jìn)》-2022-2023學(xué)年初中主題班會(huì)課件
- 2019新教材人教版生物必修1教材課后習(xí)題答案
- 2024年中國白酒行業(yè)數(shù)字化轉(zhuǎn)型研究報(bào)告-36氪-202409
- 《學(xué)校主人公:3 校園廣播站》教學(xué)設(shè)計(jì)-2024-2025學(xué)年五年級上冊綜合實(shí)踐活動(dòng)滬科黔科版
- 外傷急救包扎技術(shù)說課課件
- 人教版(2024新版)七年級上冊英語全冊語法知識(shí)點(diǎn)講義
- 全國青島版信息技術(shù)七年級下冊專題一第8課三、《高級統(tǒng)計(jì)-數(shù)據(jù)透視表》教學(xué)設(shè)計(jì)
- 清淡的晚餐(課件)六年級上冊勞動(dòng)北京版
- 婦科內(nèi)分泌疾病診斷與治療考核試卷
- 城鎮(zhèn)雨污分流項(xiàng)目可行性研究報(bào)告
- 《19 海濱小城》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)及反思
評論
0/150
提交評論