版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年天一大聯(lián)考海南省高一數(shù)學第二學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ΔABC中,a,b,c分別為A,B,C的對邊,如果a,b,c成等差數(shù)列,B=30°,ΔABC的面積為32,那么b=A.1+32 B.1+3 C.2.一個圓柱的底面直徑與高都等于球的直徑,設圓柱的側(cè)面積為,球的表面積為,則()A. B. C. D.13.若正實數(shù)x,y滿足不等式,則的取值范圍是()A. B. C. D.4.設a,b,c表示三條不同的直線,M表示平面,給出下列四個命題:其中正確命題的個數(shù)有()①若a//M,b//M,則a//b;②若b?M,a//b,則a//M;③若a⊥c,b⊥c,則a//b;④若a//c,b//c,則a//b.A.0個 B.1個 C.2個 D.3個5.從總數(shù)為的一批零件中抽取一個容量為的樣本,若每個零件被抽取的可能性為,則為()A. B. C. D.6.在中,且,則等于()A. B. C. D.7.從數(shù)字0,1,2,3,4中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),則這個兩位數(shù)大于30的概率為()A. B. C. D.8.中國古代數(shù)學名著《算法統(tǒng)宗》中有這樣一個問題:“三百七十里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行數(shù)里,請公仔細算相還”.其意思為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,請問從第幾天開始,走的路程少于30里()A.3 B.4 C.5 D.69.在平面直角坐標系中,直線與x、y軸分別交于點、,記以點為圓心,半徑為r的圓與三角形的邊的交點個數(shù)為M.對于下列說法:①當時,若,則;②當時,若,則;③當時,M不可能等于3;④M的值可以為0,1,2,3,4,5.其中正確的個數(shù)為()A.1 B.2 C.3 D.410.在等腰梯形ABCD中,,點E是線段BC的中點,若,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點和點,點在軸上,若的值最小,則點的坐標為______.12._________________;13.已知數(shù)列的前n項和為,,且(),記(),若對恒成立,則的最小值為__.14.設數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項的和________15.若,且,則的最小值是______.16.設,,,,則數(shù)列的通項公式=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在中,,為內(nèi)一點,.(1)若,求;(2)若,求的面積.18.已知函數(shù),.(1)求函數(shù)的值域;(2)若恒成立,求m的取值范圍.19.解關(guān)于x的不等式20.已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式.21.若直線與軸,軸的交點分別為,圓以線段為直徑.(Ⅰ)求圓的標準方程;(Ⅱ)若直線過點,與圓交于點,且,求直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由余弦定理得b2==14ac=32?ac=6,因為a??,??考點:余弦定理;三角形的面積公式.2、D【解析】
由圓柱的側(cè)面積及球的表面積公式求解即可.【詳解】解:設圓柱的底面半徑為,則,則圓柱的側(cè)面積為,球的表面積為,則,故選:D.【點睛】本題考查了圓柱的側(cè)面積的求法,重點考查了球的表面積公式,屬基礎(chǔ)題.3、B【解析】
試題分析:由正實數(shù)滿足不等式,得到如下圖陰影所示的區(qū)域:當過點時,,當過點時,,所以的取值范圍是.考點:線性規(guī)劃問題.4、B【解析】
由空間直線的位置關(guān)系及空間直線與平面的位置關(guān)系逐一判斷即可得解.【詳解】解:對于①,若a//M,b//M,則a//b或與相交或與異面,即①錯誤;對于②,若b?M,a//b,則a//M或a?M,即②錯誤;對于③,若a⊥c,b⊥c,則a//b或與相交或與異面,即③錯誤;對于④,若a//c,b//c,由空間直線平行的傳遞性可得a//b,即④正確,即正確命題的個數(shù)有1個,故選:B.【點睛】本題考查了空間直線的位置關(guān)系,重點考查了空間直線與平面的位置關(guān)系,屬基礎(chǔ)題.5、A【解析】
由樣本容量、總?cè)萘恳约皞€體入樣可能性三者之間的關(guān)系,列等式求出的值.【詳解】由題意可得,解得,故選A.【點睛】本題考查抽樣概念的理解,了解樣本容量、總體容量以及個體入樣可能性三者之間的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.6、A【解析】
在△ABC中,利用正弦定理與兩角和的正弦化簡已知可得,sin(A+C)=sinB,結(jié)合a>b,即可求得答案.【詳解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故選A.【點睛】本題考查兩角和與差的正弦函數(shù)與正弦定理的應用,考查了大角對大邊的性質(zhì),屬于中檔題.7、B【解析】
直接利用古典概型的概率公式求解.【詳解】從數(shù)字0,1,2,3,4中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù)有10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43,共16個,其中大于30的有31,32,34,40,41,42,43,共7個,故所求概率為.故選B【點睛】本題主要考查古典概型的概率的計算,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解析】
由題意知,本題考查等比數(shù)列問題,此人每天的步數(shù)構(gòu)成公比為的等比數(shù)列,由求和公式可得首項,進而求得答案.【詳解】設第一天的步數(shù)為,依題意知此人每天的步數(shù)構(gòu)成公比為的等比數(shù)列,所以,解得,由,,解得,故選B.【點睛】本題主要考查學生的數(shù)學抽象和數(shù)學建模能力.9、B【解析】
作出直線,可得,,,分別考慮圓心和半徑的變化,結(jié)合圖形,即可得到所求結(jié)論.【詳解】作出直線,可得,,,①當時,若,當圓與直線相切,可得;當圓經(jīng)過點,即,則或,故①錯誤;②當時,若,圓,當圓經(jīng)過O時,,交點個數(shù)為2,時,交點個數(shù)為1,則,故②正確;③當時,圓,隨著的變化可得交點個數(shù)為1,2,0,不可能等于3,故③正確;④的值可以為0,1,2,3,4,不可以為5,故④錯誤.故選:B.【點睛】本題考查命題的真假判斷與應用,考查直線和圓的位置關(guān)系,考查分析能力和計算能力.10、B【解析】
利用平面向量的幾何運算,將用和表示,根據(jù)平面向量基本定理得,的值,即可求解.【詳解】取AB的中點F,連CF,則四邊形AFCD是平行四邊形,所以,且因為,,,∴故選B.【點睛】本題主要考查了平面向量的基本定理的應用,其中解答中根據(jù)平面向量的基本定理,將用和進行表示,求得的值是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
作出圖形,作點關(guān)于軸的對稱點,由對稱性可知,結(jié)合圖形可知,當、、三點共線時,取最小值,并求出直線的方程,與軸方程聯(lián)立,即可求出點的坐標.【詳解】如下圖所示,作點關(guān)于軸的對稱點,由對稱性可知,則,當且僅當、、三點共線時,的值最小,直線的斜率為,直線的方程為,即,聯(lián)立,解得,因此,點的坐標為.故答案為:.【點睛】本題考查利用折線段長的最小值求點的坐標,涉及兩點關(guān)于直線對稱性的應用,考查數(shù)形結(jié)合思想的應用,屬于中等題.12、1【解析】
利用誘導公式化簡即可得出答案【詳解】【點睛】本題考查誘導公式,屬于基礎(chǔ)題.13、【解析】
,即為首項為,公差為的等差數(shù)列,,,,由得,因為或時,有最大值,,即的最小值為,故答案為.【方法點晴】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.14、2019【解析】
根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項的和為,故答案為.【點睛】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應用,屬于中等題.15、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.16、2n+1【解析】由條件得,且,所以數(shù)列是首項為4,公比為2的等比數(shù)列,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)求出,,中由余弦定理即可求得;(2)設,利用正弦定理表示出,求得,利用面積公式即可得解.【詳解】(1)在中,,為內(nèi)一點,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),設,在中,,在中,由正弦定理,即,,所以,的面積.【點睛】此題考查解三角形,對正余弦定理的綜合使用,涉及兩角差的正弦公式以及同角三角函數(shù)關(guān)系的使用,綜合性較強.18、(1);(2)或.【解析】
(1)根據(jù)用配方法求出二次函數(shù)對稱軸橫坐標,可得最小值,再代入端點求得最大值,可得函數(shù)的值域;(2)由(1)可得的最大值為6,轉(zhuǎn)化為求恒成立,求出m的取值范圍即可.【詳解】(1)因為,而,,,所以函數(shù)的值域為.(2)由(1)知,函數(shù)的值域為,所以的最大值為6,所以由得,解得或,故實數(shù)m的取值范圍為或.【點睛】本題考查二次函數(shù)的值域及最值,不等式恒成立求參數(shù)取值范圍,二次函數(shù)最值問題通常求出對稱軸橫坐標代入即可求得最值,由不等式恒成立求參數(shù)取值范圍可轉(zhuǎn)化為函數(shù)最值不等式問題,屬于中等題.19、見解析.【解析】試題分析:(1)討論的取值,分為,兩種情形,求出對應不等式的解集即可.試題解析:當a=0時,原不等式化為x+10,解得;當時,原不等式化為,解得;綜上所述,當a=0時,不等式的解集為,當時,不等式的解集為.點睛:本題考查了含有字母系數(shù)的不等式的解法與應用問題,元二次不等式的核心還是求一元二次方程的根,然后在結(jié)合圖象判定其區(qū)間解題時應用分類討論的思想,是中檔題目;常見的討論形式有:1、對二項式系數(shù)進行討論;2、相對應的方程是否有根進行討論;3、對應根的大小進行討論.20、(1)證明見解析;(2).【解析】
(1)利用數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列是等比數(shù)列;(2)確定等比數(shù)列的首項和公比,求出數(shù)列的通項公式,即可求出.【詳解】(1),,因此,數(shù)列是等比數(shù)列;(2)由于,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,.【點睛】本題考查等比數(shù)列的證明,同時也考查了數(shù)列通項的求解,考查推理能力與計算能力,屬于中等題.21、(Ⅰ);(Ⅱ)或.【解析】
(1)本題首先根據(jù)直線方程確定、兩點坐標,然后根據(jù)線段為直徑確定圓心與半徑,即可得出圓的標準方程;(2)首先可根據(jù)題意得出圓心到直線的距離為,然后根據(jù)直線的斜率是否存在分別設出直線方程,最后根據(jù)圓心到直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025上半年四川遂寧市安居區(qū)部分事業(yè)單位考試招聘7人高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川省自貢市事業(yè)單位招聘(1121人)高頻重點提升(共500題)附帶答案詳解
- 人工智能醫(yī)療輔助服務合同
- 2025年度大米加工產(chǎn)品出口代理委托合同3篇
- 2025年度工程轉(zhuǎn)讓版基礎(chǔ)設施改造升級合同2篇
- 2025年度夫妻間家務分工與生活細節(jié)協(xié)調(diào)協(xié)議書
- 2025年度工傷事故賠償免責協(xié)議書修訂指南
- 2025年度城市更新項目土地置換合同協(xié)議3篇
- 2025年度合伙經(jīng)營項目退出合作協(xié)議書
- 2025年度電影特效外聘演員聘用協(xié)議3篇
- 2023年山東省煙臺市中考英語試卷(含解析)
- A320 機型飛行人員理論考試題庫-導出版
- 新媒體時代網(wǎng)絡輿情應對技巧
- 2023年地下室基礎(chǔ)換填專項施工方案
- 高中語文詞匯表5000
- 高一語文必修一新聞和報告文學閱讀復習題及答案解析
- 泛海三江JB-QGL-9100火災報警控制器(聯(lián)動型)使用手冊
- 6077三菱帕杰羅v86v93v98w維修手冊原廠
- 中華人民共和國史馬工程課件01第一章
- 初中體育與健康人教七-九年級全一冊球類足球腳內(nèi)側(cè)傳接球 市賽獲獎PPT
- 基于CAN通訊的儲能變流器并機方案及應用分析報告-培訓課件
評論
0/150
提交評論