版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年山東省沾化縣中考數(shù)學(xué)四模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.將(x+3)2﹣(x﹣1)2分解因式的結(jié)果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)2.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.3.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(a2)3=a5 C.=3 D.2+=24.若※是新規(guī)定的某種運(yùn)算符號,設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-25.已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P,若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤6.《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就.其中記載:今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價(jià)各幾何?譯文:今有人合伙購物,每人出8錢,會(huì)多3錢;每人出7錢,又會(huì)差4錢,問人數(shù)、物價(jià)各是多少?設(shè)合伙人數(shù)為x人,物價(jià)為y錢,以下列出的方程組正確的是(
)A. B. C. D.7.有四包真空包裝的火腿腸,每包以標(biāo)準(zhǔn)質(zhì)量450g為基準(zhǔn),超過的克數(shù)記作正數(shù),不足的克數(shù)記作負(fù)數(shù).下面的數(shù)據(jù)是記錄結(jié)果,其中與標(biāo)準(zhǔn)質(zhì)量最接近的是()A.+2 B.﹣3 C.+4 D.﹣18.下列計(jì)算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a79.計(jì)算(﹣)﹣1的結(jié)果是()A.﹣ B. C.2 D.﹣210.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.12.小球在如圖所示的地板上自由地滾動(dòng),并隨機(jī)地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.13.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當(dāng)行駛至A處時(shí),發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時(shí)貨輪與燈塔B的距離是________km.14.因式分解:____________.15.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點(diǎn)D,則∠DBC的度數(shù)是____________.16.若關(guān)于x的一元二次方程x2+mx+2n=0有一個(gè)根是2,則m+n=_____.三、解答題(共8題,共72分)17.(8分)問題提出(1)如圖1,正方形ABCD的對角線交于點(diǎn)O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請通過計(jì)算求出門角B到門窗弓形弧AD的最大距離.18.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過其頂點(diǎn)C作直線CP⊥x軸,垂足為點(diǎn)P,連接AD、BC.(1)求點(diǎn)A、B、D的坐標(biāo);(2)若△AOD與△BPC相似,求a的值;(3)點(diǎn)D、O、C、B能否在同一個(gè)圓上,若能,求出a的值,若不能,請說明理由.19.(8分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點(diǎn)處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達(dá)E處,測得燈塔C在北偏東45°方向上,這時(shí),E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(8分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機(jī)地取出一個(gè)棋子,如果它是黑色棋子的概率是;如果往盒中再放進(jìn)10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.21.(8分)二次函數(shù)y=x2﹣2mx+5m的圖象經(jīng)過點(diǎn)(1,﹣2).(1)求二次函數(shù)圖象的對稱軸;(2)當(dāng)﹣4≤x≤1時(shí),求y的取值范圍.22.(10分)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點(diǎn)F,延長DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;(2)過點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?3.(12分)如圖,矩形ABCD為臺(tái)球桌面,AD=260cm,AB=130cm,球目前在E點(diǎn)位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點(diǎn)F將球打過去,經(jīng)過反彈后,球剛好彈到D點(diǎn)位置.求BF的長.24.如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為1.當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點(diǎn)睛】此題主要考查了公式法分解因式,正確應(yīng)用平方差公式是解題關(guān)鍵.2、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項(xiàng)A、C錯(cuò)誤,選項(xiàng)D正確,選項(xiàng)B錯(cuò)誤,故選D.3、C【解析】
結(jié)合選項(xiàng)分別進(jìn)行冪的乘方和積的乘方、同底數(shù)冪的乘法、實(shí)數(shù)的運(yùn)算等運(yùn)算,然后選擇正確選項(xiàng).【詳解】解:A.a3a2=a5,原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;B.(a2)3=a6,原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;C.=3,原式計(jì)算正確,故本選項(xiàng)正確;D.2和不是同類項(xiàng),不能合并,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了冪的乘方與積的乘方,實(shí)數(shù)的運(yùn)算,同底數(shù)冪的乘法,解題的關(guān)鍵是冪的運(yùn)算法則.4、C【解析】解:由題意得:,∴,∴x=±1.故選C.5、D【解析】
①首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE過點(diǎn)B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯(cuò)誤的;
③利用全等三角形的性質(zhì)和對頂角相等即可判定③說法正確;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計(jì)算即可判定;
⑤連接BD,根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;
由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,
所以∠BEP=90°,
過B作BF⊥AE,交AE的延長線于F,則BF的長是點(diǎn)B到直線AE的距離,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是錯(cuò)誤的;
因?yàn)椤鰽PD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯(cuò)誤的;
連接BD,則S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
綜上可知,正確的有①③⑤.故選D.【點(diǎn)睛】考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強(qiáng),解題時(shí)要求熟練掌握相關(guān)的基礎(chǔ)知識(shí)才能很好解決問題.6、C【解析】【分析】分析題意,根據(jù)“每人出8錢,會(huì)多3錢;每人出7錢,又會(huì)差4錢,”可分別列出方程.【詳解】設(shè)合伙人數(shù)為x人,物價(jià)為y錢,根據(jù)題意得故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):列方程組解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.7、D【解析】試題解析:因?yàn)閨+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質(zhì)量是-1的工件最接近標(biāo)準(zhǔn)工件.故選D.8、A【解析】
根據(jù)合并同類項(xiàng)法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項(xiàng)正確;B.,故本選項(xiàng)錯(cuò)誤;C.,故本選項(xiàng)錯(cuò)誤;D.,故本選項(xiàng)錯(cuò)誤.故選:A.【點(diǎn)睛】考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎(chǔ),掌握運(yùn)算法則是解題的關(guān)鍵.9、D【解析】
根據(jù)負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,
故選D.【點(diǎn)睛】本題考查了負(fù)整數(shù)指數(shù)冪,負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).10、C【解析】
根據(jù)平行線分線段成比例定理找準(zhǔn)線段的對應(yīng)關(guān)系,對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項(xiàng)A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項(xiàng)B不正確;∵EF∥AB,∴=,選項(xiàng)C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項(xiàng)D不正確;故選C.【點(diǎn)睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時(shí)尋找對應(yīng)線段是關(guān)健.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案為:3.12、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41813、1【解析】
作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質(zhì)求出∠B的度數(shù),根據(jù)正弦的定義計(jì)算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標(biāo)注方向角、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.14、3(x-2)(x+2)【解析】
先提取公因式3,再根據(jù)平方差公式進(jìn)行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點(diǎn)睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進(jìn)行二次分解,注意分解要徹底.15、15°【解析】分析:根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),根據(jù)中垂線的性質(zhì)得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵M(jìn)N為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點(diǎn)睛:本題主要考查的是等腰三角形的性質(zhì)以及中垂線的性質(zhì)定理,屬于中等難度的題型.理解中垂線的性質(zhì)是解決這個(gè)問題的關(guān)鍵.416、﹣1【解析】
根據(jù)一元二次方程的解的定義把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=?1,然后利用整體代入的方法進(jìn)行計(jì)算.【詳解】∵1(n≠0)是關(guān)于x的一元二次方程x1+mx+1n=0的一個(gè)根,∴4+1m+1n=0,∴n+m=?1,故答案為?1.【點(diǎn)睛】本題考查了一元二次方程的解(根):能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因?yàn)橹缓幸粋€(gè)未知數(shù)的方程的解也叫做這個(gè)方程的根,所以,一元二次方程的解也稱為一元二次方程的根.三、解答題(共8題,共72分)17、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點(diǎn)N為AD的中點(diǎn),,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點(diǎn)睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長方形的性質(zhì)、勾股定理等,靈活的利用兩點(diǎn)之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點(diǎn)到圓上的最大距離是解題的關(guān)鍵.18、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標(biāo),得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點(diǎn)C(,-),從而得PB=3-=,PC=;再分情況討論:①當(dāng)△AOD∽△BPC時(shí),根據(jù)相似三角形性質(zhì)得,
解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點(diǎn)M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點(diǎn)C也在此圓上,則MC=MB,根據(jù)兩點(diǎn)間的距離公式得一個(gè)關(guān)于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),∴A(a,0),B(3,0),當(dāng)x=0時(shí),y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當(dāng)x=時(shí),y=-,∴C(,-),∴PB=3-=,PC=,①當(dāng)△AOD∽△BPC時(shí),∴,即,
解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點(diǎn)M,∵D、B、O三點(diǎn)共圓,且BD為直徑,圓心為M(,a),若點(diǎn)C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.【點(diǎn)睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點(diǎn)共圓等,綜合性較強(qiáng),有一定的難度,正確進(jìn)行分析,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.19、35km【解析】試題分析:如圖作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.試題解析:如圖,作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E處距離港口A有35km.20、x=15,y=1【解析】
根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;
(2)若往盒中再放進(jìn)10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)?,結(jié)合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗(yàn)當(dāng)x=15,y=1時(shí),,,∴x=15,y=1是原方程的解,經(jīng)檢驗(yàn),符合題意.答:x=15,y=1.【點(diǎn)睛】此題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.21、(1)x=-1;(2)﹣6≤y≤1;【解析】
(1)根據(jù)拋物線的對稱性和待定系數(shù)法求解即可;(2)根據(jù)二次函數(shù)的性質(zhì)可得.【詳解】(1)把點(diǎn)(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函數(shù)y=x2﹣2mx+5m的對稱軸是x=,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴當(dāng)x=﹣1時(shí),y取得最小值﹣6,由表可知當(dāng)x=﹣4時(shí)y=1,當(dāng)x=﹣1時(shí)y=﹣6,∴當(dāng)﹣4≤x≤1時(shí),﹣6≤y≤1.【點(diǎn)睛】本題考查了二次函數(shù)圖象與性質(zhì)及待定系數(shù)法求函數(shù)解析式,熟練掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.22、(1)詳見解析;(2)∠BDE=20°.【解析】
(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質(zhì)可得∠F=∠PBC;再利用同角的補(bǔ)角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結(jié)論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進(jìn)而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質(zhì)可得∠OAD=∠DOC=20°,最后根據(jù)圓周角定理及平行線的性質(zhì)即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內(nèi)接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024年一級人力資源管理師考試題庫(帶答案解析)
- 2024年現(xiàn)代農(nóng)業(yè)大棚示范園購銷合同3篇
- 2024年跨國企業(yè)營銷與市場代運(yùn)營合同
- 2024年銷售團(tuán)隊(duì)業(yè)績承諾及客戶關(guān)系維護(hù)合同3篇
- 2024年版設(shè)計(jì)服務(wù)協(xié)議提前終止協(xié)議版
- 2024版場地外包合同范本
- 勞動(dòng)人事管理簽訂合同范本
- 二零二五年地磚施工環(huán)保認(rèn)證與質(zhì)量保障合同3篇
- 2024年稅收優(yōu)惠政策框架3篇
- 2024年鋼材訂購協(xié)議
- 北京市朝陽區(qū)2024-2025學(xué)年高二上學(xué)期期末考試生物試卷(含答案)
- 湖南2025年湖南電氣職業(yè)技術(shù)學(xué)院招聘14人歷年參考題庫(頻考版)含答案解析
- 生物除臭系統(tǒng)施工方案
- DB51T 1069-2010 四川泡菜生產(chǎn)規(guī)范
- 《電工技術(shù)》課件-電氣安全及電氣火災(zāi)預(yù)防
- 湖南省湘西州吉首市2023屆九年級上學(xué)期期末素質(zhì)監(jiān)測數(shù)學(xué)試卷(含解析)
- 2023-2024學(xué)年湖北省武漢市東西湖區(qū)三年級(上)期末數(shù)學(xué)試卷
- GB/T 31771-2024家政服務(wù)母嬰護(hù)理服務(wù)質(zhì)量規(guī)范
- 2023-建筑施工技02課件講解
- 期末試卷:福建省廈門市集美區(qū)2021-2022學(xué)年八年級上學(xué)期期末歷史試題(原卷版)
- 美容院2024年度規(guī)劃
評論
0/150
提交評論