版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河北省邢臺一中、邢臺二中高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等差數(shù)列中,若,且它的前項和有最大值,則使成立的正整數(shù)的最大值是()A.15 B.16 C.17 D.142.已知,,,,則()A. B. C.或 D.或3.在中,角,,所對的邊分別為,,,若,,,則的值為()A. B. C. D.4.已知的內(nèi)角的對邊分別為,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形5.已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0,﹣π<φ<π),若該函數(shù)在區(qū)間()上有最大值而無最小值,且滿足f()+f()=0,則實數(shù)φ的取值范圍是()A.(,) B.(,) C.(,) D.(,)6.如圖,在下列四個正方體中,,,,,,,為所在棱的中點,則在這四個正方體中,陰影平面與所在平面平行的是()A. B.C. D.7.在正方體中,異面直線與所成的角為()A.30° B.45° C.60° D.90°8.設(shè)向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.49.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.10.如圖,中,分別是邊的中點,與相交于點,則(
)A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)在一個周期內(nèi)的圖象如圖所示,則的解析式是______.12.△ABC中,,,則=_____.13.若函數(shù)的圖像與直線有且僅有四個不同的交點,則的取值范圍是______14.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列,若,則________________.15.函數(shù)的值域為_____________.16.在直角梯形.中,,分別為的中點,以為圓心,為半徑的圓交于,點在上運動(如圖).若,其中,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點與原點重合,其始邊與軸正半軸重合,終邊與單位圓交于點,若,且.(1)求的值;(2)求的值.18.化簡.19.在中,角所對的邊分別為,滿足(1)求的值;(2)若,求b的取值范圍.20.已知向量,且(1)當(dāng)時,求及的值;(2)若函數(shù)的最小值是,求實數(shù)的值.21.已知等差數(shù)列的前項的和為,,.(1)求數(shù)列的通項公式;(2)設(shè),記數(shù)列的前項和為,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意可得,,且,由等差數(shù)列的性質(zhì)和求和公式可得結(jié)論.【詳解】∵等差數(shù)列的前項和有最大值,∴等差數(shù)列為遞減數(shù)列,又,∴,,∴,又,,∴成立的正整數(shù)的最大值是17,故選C.【點睛】本題考查等差數(shù)列的性質(zhì),涉及等差數(shù)列的求和公式,屬中檔題.2、B【解析】
先根據(jù)角的范圍及平方關(guān)系求出和,然后可算出,進而可求出【詳解】因為,,,所以,,所以,所以因為,所以故選:B【點睛】在由三角函數(shù)的值求角時,應(yīng)根據(jù)角的范圍選擇合適的三角函數(shù),以免產(chǎn)生多的解.3、B【解析】
先利用面積公式得到,再利用余弦定理得到【詳解】余弦定理:故選B【點睛】本題考查了面積公式和余弦定理,意在考查學(xué)生的計算能力.4、A【解析】中,,所以.由正弦定理得:.所以.所以,即因為為的內(nèi)角,所以所以為等腰三角形.故選A.5、D【解析】
根據(jù)題意可畫圖分析確定的周期,再列出在區(qū)間端點滿足的關(guān)系式求解即可.【詳解】由題該函數(shù)在區(qū)間()上有最大值而無最小值可畫出簡圖,又,故周期滿足.故.故.又,故.故選:D【點睛】本題主要考查了正弦型函數(shù)圖像的綜合運用,需要根據(jù)題意列出端點處的函數(shù)對應(yīng)的表達式求解.屬于中等題型.6、A【解析】
根據(jù)線面平行判定定理以及作截面逐個分析判斷選擇.【詳解】A中,因為,所以可得平面,又,可得平面,從而平面平面B中,作截面可得平面平面(H為C1D1中點),如圖:C中,作截面可得平面平面(H為C1D1中點),如圖:D中,作截面可得為兩相交直線,因此平面與平面不平行,如圖:【點睛】本題考查線面平行判定定理以及截面,考查空間想象能力與基本判斷論證能力,屬中檔題.7、C【解析】
首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接.因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點睛】本題考查異面直線所成的角,利用平行構(gòu)造三角形或平行四邊形是關(guān)鍵,考查了空間想象能力和推理能力,屬于中檔題.8、B【解析】
首先求出的坐標(biāo),再根據(jù)平面向量共線定理解答.【詳解】解:,因為,所以,解得.故選:【點睛】本題考查平面向量共線定理的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】
運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進行合理排除.【詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【點睛】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.10、C【解析】
利用向量的加減法的法則,利用是的重心,進而得出,再利用向量的加減法的法則,即可得出答案.【詳解】由題意,點分別是邊的中點,與相交于點,所以是的重心,則,又因為,所以故答案為C【點睛】本題主要考查了向量的線性運算,以及三角形重心的性質(zhì),其中解答中熟記三角形重心的性質(zhì),以及向量的線性運算法則是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圖象得出,得出該函數(shù)圖象的最小正周期,可得出,再將點的坐標(biāo)代入函數(shù)的解析式,結(jié)合該函數(shù)在附近的單調(diào)性求得的表達式,即可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,,則,由于函數(shù)的圖象過點,且在附近單調(diào)遞增,所以,,,因此,.故答案為:.【點睛】本題考查利用三角函數(shù)的圖象求解析式,一般要結(jié)合圖象依次求出、、的值,在利用對稱中心求時,要結(jié)合函數(shù)在對稱中心附近的單調(diào)性來求解,考查計算能力,屬于中等題.12、【解析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點:正余弦定理13、【解析】
將函數(shù)寫成分段函數(shù)的形式,再畫出函數(shù)的圖象,則直線與函數(shù)圖象有四個交點,從而得到的取值范圍.【詳解】因為因為所以,所以圖象關(guān)于對稱,其圖象如圖所示:因為直線與函數(shù)圖象有四個交點,所以.故答案為:.【點睛】本題考查利用三角函數(shù)圖象研究與直線交點個數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,作圖時發(fā)現(xiàn)圖象關(guān)于對稱,是快速畫出圖象的關(guān)鍵.14、【解析】
由圖乙可得:第行有個數(shù),且第行最后的一個數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個數(shù),則前行共有個數(shù),②第行最后的一個數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個數(shù)為,這行中第個數(shù)為,前行共有個數(shù),則為第個數(shù).故填.【點睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.15、【解析】
分析函數(shù)在區(qū)間上的單調(diào)性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當(dāng)時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關(guān)鍵就是判斷出函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
建立直角坐標(biāo)系,設(shè),根據(jù),表示出,結(jié)合三角函數(shù)相關(guān)知識即可求得最大值.【詳解】建立如圖所示的平面直角坐標(biāo)系:,分別為的中點,,以為圓心,為半徑的圓交于,點在上運動,設(shè),,即,,所以,兩式相加:,即,要取得最大值,即當(dāng)時,故答案為:【點睛】此題考查平面向量線性運算,處理平面幾何相關(guān)問題,涉及三角換元,轉(zhuǎn)化為求解三角函數(shù)的最值問題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)平方處理求出,根據(jù)角的范圍可得,即可得解;(2)變形處理,結(jié)合(1)已計算的結(jié)果即可求解.【詳解】(1)由題:角的頂點與原點重合,其始邊與軸正半軸重合,終邊與單位圓交于點,若,,即,兩邊平方可得:,,所以;(2)【點睛】此題考查同角三角函數(shù)的關(guān)系,根據(jù)平方關(guān)系處理同角正余弦的和差積三者關(guān)系,利用平方關(guān)系合理變形求值.18、【解析】
利用誘導(dǎo)公式進行化簡,即可得到答案.【詳解】原式.【點睛】本題考查誘導(dǎo)公式的應(yīng)用,考查運算求解能力,求解時注意奇變偶不變,符號看象限這一口訣的應(yīng)用.19、(1)(2)【解析】
(1)代入條件化簡得,再由同角三角函數(shù)基本關(guān)系求出;(2)利用余弦定理、,把表示成關(guān)于的二次函數(shù).【詳解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范圍為.【點睛】對于運動變化問題,常用函數(shù)與方程的思想進行研究,所以自然而然想到構(gòu)造以是關(guān)于或的函數(shù).20、(1),(2).【解析】
(1)以向量為載體求解向量數(shù)量積、模長,我們只需要把向量坐標(biāo)表示出來,最后用公式就能輕松完成;(2)由(1)可以把表達式求出,最終化成二次復(fù)合型函數(shù)模式,考慮軸與區(qū)間的位置關(guān)系,我們就能對函數(shù)進行進一步的研究.【詳解】(1)因為,所以又因為,所以(2),當(dāng)時,.當(dāng)時,不滿足.當(dāng)時,,,不滿足.綜上,實數(shù)的值為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人民版四年級數(shù)學(xué)上冊階段測試試卷含答案
- 2025年人教新起點九年級語文上冊階段測試試卷含答案
- 2024版陜西人社勞動合同范本
- 2025年浙教版九年級科學(xué)上冊階段測試試卷
- 2025年華東師大版九年級數(shù)學(xué)下冊階段測試試卷含答案
- 2025年新科版七年級生物下冊階段測試試卷含答案
- 2025年冀教新版七年級語文上冊階段測試試卷
- 2025年度水面養(yǎng)殖承包及養(yǎng)殖技術(shù)改良合同3篇
- 2025年人教版(2024)三年級英語上冊階段測試試卷
- 2025年人教B版九年級物理下冊月考試卷含答案
- 修訂完整-(兒研所)嬰幼兒發(fā)育診斷量表幼兒教育
- 教代會會場背景(紅旗)圖片課件
- 工學(xué)第八章-固相反應(yīng)課件
- 臨時用電拆除方案
- 詩經(jīng)研究課程教學(xué)大綱
- 垂體瘤診療規(guī)范內(nèi)科學(xué)診療規(guī)范診療指南2023版
- 國家安全教育學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 三年級道德與法治教學(xué)工作總結(jié)
- 中國茶文化(中文版)
- 托卡馬克等離子體約束
- 02J401鋼梯安裝圖集
評論
0/150
提交評論