2025屆上海市師大二附中數學高一下期末考試模擬試題含解析_第1頁
2025屆上海市師大二附中數學高一下期末考試模擬試題含解析_第2頁
2025屆上海市師大二附中數學高一下期末考試模擬試題含解析_第3頁
2025屆上海市師大二附中數學高一下期末考試模擬試題含解析_第4頁
2025屆上海市師大二附中數學高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市師大二附中數學高一下期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,向量,,,則向量可以表示為()A.B.C.D.2.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數字特征是A.中位數 B.平均數C.方差 D.極差3.已知四棱錐中,平面平面,其中為正方形,為等腰直角三角形,,則四棱錐外接球的表面積為()A. B. C. D.4.已知平行四邊形對角線與交于點,設,,則()A. B. C. D.5.在等差數列中,,則的值()A. B. C. D.6.點是角終邊上一點,則的值為()A. B. C. D.7.已知點,,則與向量的方向相反的單位向量是()A. B. C. D.8.“是與的等差中項”是“是與的等比中項”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知網格紙的各個小格均是邊長為一個單位的正方形,一個幾何體的三視圖如圖中粗線所示,則該幾何體的表面積為()A. B. C. D.10.經過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則______,______.12.已知與的夾角為求=_____.13.在△ABC中,內角A、B、C所對的邊分別為a、b、c,若,則_____.14.一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經建有索道供游客觀賞,經測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現調查后發(fā)現,游客對在同一圓周上三島A、B、C且位于(優(yōu)弧)一片的風景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風光,現決定在上選擇一個點D建立索道供游客游覽,經研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)15.已知,則的最小值是__________.16.若函數的圖象與直線恰有兩個不同交點,則的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若直線與軸,軸的交點分別為,圓以線段為直徑.(Ⅰ)求圓的標準方程;(Ⅱ)若直線過點,與圓交于點,且,求直線的方程.18.已知是圓的直徑,垂直圓所在的平面,是圓上任一點.求證:平面⊥平面.19.已知圓與軸交于兩點,且(為圓心),過點且斜率為的直線與圓相交于兩點(Ⅰ)求實數的值;(Ⅱ)若,求的取值范圍;(Ⅲ)若向量與向量共線(為坐標原點),求的值20.如圖,在三棱錐中,,,,,為線段的中點,為線段上一點.(1)求證:平面平面;(2)當平面時,求三棱錐的體積.21.已知數列前n項和滿足(1)求數列的通項公式;(2)求數列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用平面向量加法和減法的運算,求得的線性表示.【詳解】依題意,即,故選C.【點睛】本小題主要考查平面向量加法和減法的運算,屬于基礎題.2、A【解析】

可不用動筆,直接得到答案,亦可采用特殊數據,特值法篩選答案.【詳解】設9位評委評分按從小到大排列為.則①原始中位數為,去掉最低分,最高分,后剩余,中位數仍為,A正確.②原始平均數,后來平均數平均數受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學生對中位數、平均數、方差、極差本質的理解.3、D【解析】

因為為等腰直角三角形,,故,則點到平面的距離為,而底面正方形的中心到邊的距離也為,則頂點正方形中心的距離,正方形的外接圓的半徑為,故正方形的中心是球心,則球的半徑為,所以該幾何體外接球的表面積,應選D.4、B【解析】

根據向量減法的三角形法則和數乘運算直接可得結果.【詳解】本題正確選項:【點睛】本題考查向量的線性運算問題,涉及到向量的減法和數乘運算的應用,屬于基礎題.5、B【解析】

根據等差數列的性質,求得,再由,即可求解.【詳解】根據等差數列的性質,可得,即,則,故選B.【點睛】本題主要考查了等差數列的性質,以及特殊角的三角函數值的計算,著重考查了推理與運算能力,屬于基礎題.6、A【解析】

利用三角函數的定義求出的值,然后利用誘導公式可求出的值.【詳解】由三角函數的定義可得,由誘導公式可得.故選A.【點睛】本題考查三角函數的定義,同時也考查了利用誘導公式求值,在利用誘導公式求值時,充分理解“奇變偶不變,符號看象限”這個規(guī)律,考查計算能力,屬于基礎題.7、A【解析】

根據單位向量的定義即可求解.【詳解】,向量的方向相反的單位向量為,故選A.【點睛】本題主要考查了向量的坐標運算,向量的單位向量的概念,屬于中檔題.8、A【解析】

根據等差中項和等比中項的定義,結合充分條件和必要條件的定義進行判斷即可.【詳解】若是與的等差中項,則,若是與的等比中項,則,則“是與的等差中項”是“是與的等比中項”的充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差中項和等比中項的定義求出的值是解決本題的關鍵.9、B【解析】

根據三視圖還原幾何體即可.【詳解】由三視圖可知,該幾何體為一個圓柱內切了一個圓錐,圓錐側面積為,圓柱上底面積為,圓柱側面積為,.所以選擇B【點睛】本題主要考查了三視圖,根據三視圖還原幾何體常用的方法有:在正方體或者長方體中切割.屬于中等題.10、B【解析】

設出圓心坐標,由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標準方程,考查直線與圓的位置關系.求出圓心坐標與半徑是求圓標準方程的基本方法.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

對極限表達式進行整理,得到,由此作出判斷,即可得出參數的值.【詳解】因為所以,解得:.故答案為:;【點睛】本題主要考查由極限值求參數的問題,熟記極限運算法則即可,屬于??碱}型.12、【解析】

由題意可得:,結合向量的運算法則和向量模的計算公式可得的值.【詳解】由題意可得:,則:.【點睛】本題主要考查向量模的求解,向量的運算法則等知識,意在考查學生的轉化能力和計算求解能力.13、【解析】

先利用同角三角函數的商數關系可得,再結合正弦定理及余弦定理化簡可得,然后求解即可.【詳解】解:因為,則,所以,即,所以,則,即,即即,故答案為:.【點睛】本題考查了同角三角函數的商數關系,重點考查了正弦定理及余弦定理的應用,屬中檔題.14、【解析】

根據題意畫出草圖,根據余弦定理求出的值,設點到的距離為,可得,分析可知取最大時,取最大值,然后再對為中點和不是中點兩種情況分析,可得的最大值為,然后再根據圓的有關性質和正弦定理,即可求出結果.【詳解】根據題意可作出及其外接圓,連接,交于點,連接,如下圖:在中,由余弦定理,由為的內角,可知,所以.設的半徑為,點到的距離為,點到的距離為,則,故取最大時,取最大值.①當為中點時,由垂徑定理知,即,此時,故;②當不是中點時,不與垂直,設此時與所成角為,則,故;由垂線段最短知,此時;綜上,當為中點時,到的距離最大,最大值為;由圓周角定理可知,,由垂徑定理知,此時點為優(yōu)弧的中點,故,則,在中,由正弦定理得所以.所以當△ADC面積最大時建立索道AD的長為公里.故答案為:.【點評】本題考查了正弦定理、余弦定理在解決實際問題中的應用,屬于中檔題.15、【解析】分析:利用題設中的等式,把的表達式轉化成,展開后,利用基本不等式求得y的最小值.詳解:因為,所以,所以(當且僅當時等號成立),則的最小值是,總上所述,答案為.點睛:該題考查的是有關兩個正數的整式形式和為定值的情況下求其分式形式和的最值的問題,在求解的過程中,注意相乘,之后應用基本不等式求最值即可,在做乘積運算的時候要注意乘1是不變的,如果不是1,要做除法運算.16、【解析】

作出函數的圖像,根據圖像可得答案.【詳解】因為,所以,所以,所以,作出函數的圖像,由圖可知故答案為:【點睛】本題考查了正弦型函數的圖像,考查了數形結合思想,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)或.【解析】

(1)本題首先根據直線方程確定、兩點坐標,然后根據線段為直徑確定圓心與半徑,即可得出圓的標準方程;(2)首先可根據題意得出圓心到直線的距離為,然后根據直線的斜率是否存在分別設出直線方程,最后根據圓心到直線距離公式即可得出結果?!驹斀狻?1)令方程中的,得,令,得.所以點的坐標分別為.所以圓的圓心是,半徑是,所以圓的標準方程為.(2)因為,圓的半徑為,所以圓心到直線的距離為.若直線的斜率不存在,直線的方程為,符合題意.若直線的斜率存在,設其直線方程為,即.圓的圓心到直線的距離,解得.則直線的方程為,即.綜上,直線的方程為或.【點睛】本題考查圓的標準方程與幾何性質,考查直線和圓的位置關系,當直線與圓相交時,半徑、弦長的一半以及圓心到直線距離可構成直角三角形,考查計算能力,在計算過程中要注意討論直線的斜率是否存在,是中檔題。18、證明見解析【解析】

先證直線平面,再證平面⊥平面.【詳解】證明:∵是圓的直徑,是圓上任一點,,,平面,平面,,又,平面,又平面,平面⊥平面.【點睛】本題考查圓周角及線面垂直判定定理、面面垂直判定定理的應用,考查垂直關系的簡單證明.19、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(Ⅰ)由圓的方程得到圓心坐標和;根據、為等腰直角三角形可知,從而得到,解方程求得結果;(Ⅱ)設直線方程為;利用點到直線距離公式求得圓心到直線距離;由垂徑定理可得到,利用可構造不等式求得結果;(Ⅲ)直線方程與圓方程聯(lián)立,根據直線與圓有兩個交點可根據得到的取值范圍;設,,利用韋達定理求得,并利用求得,即可得到;利用向量共線定理可得到關于的方程,解方程求得滿足取值范圍的結果.【詳解】(Ⅰ)由圓得:圓心,由題意知,為等腰直角三角形設的中點為,則也為等腰直角三角形,解得:(Ⅱ)設直線方程為:則圓心到直線的距離:由,,可得:,解得:的取值范圍為:(Ⅲ)聯(lián)立直線與圓的方程:消去變量得:設,,由韋達定理得:且,整理得:解得:或,與向量共線,,解得:或不滿足【點睛】本題考查直線與圓位置關系的綜合應用,涉及到圓的方程的求解、垂徑定理的應用、平面向量共線定理的應用;求解直線與圓位置關系綜合應用類問題的常用方法是靈活應用圓心到直線的距離、直線與圓方程聯(lián)立,韋達定理構造方程等方法,屬于常考題型.20、(1)見證明;(2)【解析】

(1)利用線面垂直判定定理得平面,可得;根據等腰三角形三線合一得,利用線面垂直判定定理和面面垂直判定定理可證得結論;(2)利用線面平行的性質定理可得,可知為中點,利用體積橋可知,利用三棱錐體積公式可求得結果.【詳解】(1)證明:,平面又平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論