北京市教育院附中重點(diǎn)達(dá)標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題及答案解析_第1頁(yè)
北京市教育院附中重點(diǎn)達(dá)標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題及答案解析_第2頁(yè)
北京市教育院附中重點(diǎn)達(dá)標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題及答案解析_第3頁(yè)
北京市教育院附中重點(diǎn)達(dá)標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題及答案解析_第4頁(yè)
北京市教育院附中重點(diǎn)達(dá)標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市教育院附中重點(diǎn)達(dá)標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個(gè)不相等的實(shí)數(shù)根 B.沒(méi)有實(shí)數(shù)根C.有兩個(gè)相等的實(shí)數(shù)根 D.有一個(gè)根是02.某商店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣(mài)了80元,其中一個(gè)贏利60%,另一個(gè)虧本20%,在這次買(mǎi)賣(mài)中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺3.為了盡早適應(yīng)中考體育項(xiàng)目,小麗同學(xué)加強(qiáng)跳繩訓(xùn)練,并把某周的練習(xí)情況做了如下記錄:周一個(gè),周二個(gè),周三個(gè),周四個(gè),周五個(gè)則小麗這周跳繩個(gè)數(shù)的中位數(shù)和眾數(shù)分別是A.180個(gè),160個(gè) B.170個(gè),160個(gè)C.170個(gè),180個(gè) D.160個(gè),200個(gè)4.若2<<3,則a的值可以是()A.﹣7 B. C. D.125.如圖,點(diǎn)ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°6.下列對(duì)一元二次方程x2+x﹣3=0根的情況的判斷,正確的是()A.有兩個(gè)不相等實(shí)數(shù)根 B.有兩個(gè)相等實(shí)數(shù)根C.有且只有一個(gè)實(shí)數(shù)根 D.沒(méi)有實(shí)數(shù)根7.若△ABC與△DEF相似,相似比為2:3,則這兩個(gè)三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:48.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為()cm.A. B. C. D.9.已知函數(shù)的圖象與x軸有交點(diǎn).則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠310.等腰三角形一邊長(zhǎng)等于5,一邊長(zhǎng)等于10,它的周長(zhǎng)是()A.20 B.25 C.20或25 D.15二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C,D均在格點(diǎn)上,AB與CD相交于點(diǎn)E.(1)AB的長(zhǎng)等于_____;(2)點(diǎn)F是線段DE的中點(diǎn),在線段BF上有一點(diǎn)P,滿(mǎn)足,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出點(diǎn)P,并簡(jiǎn)要說(shuō)明點(diǎn)P的位置是如何找到的(不要求證明)_____.12.有5張背面看上去無(wú)差別的撲克牌,正面分別寫(xiě)著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機(jī)抽取2張,抽出的卡片上的數(shù)字恰好是兩個(gè)連續(xù)整數(shù)的概率是__.13.分解因式:x2y﹣4xy+4y=_____.14.如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過(guò)頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為_(kāi)_____.15.拋物線y=(x﹣3)2+1的頂點(diǎn)坐標(biāo)是____.16.將一張長(zhǎng)方形紙片按如圖所示的方式折疊,BD、BE為折痕,若∠ABE=20°,則∠DBC為_(kāi)____度.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).18.(8分)如圖所示,已知,試判斷與的大小關(guān)系,并說(shuō)明理由.19.(8分)校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道l上確定點(diǎn)D,使CD與l垂直,測(cè)得CD的長(zhǎng)等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.求AB的長(zhǎng)(結(jié)果保留根號(hào));已知本路段對(duì)校車(chē)限速為45千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)1.5秒,這輛校車(chē)是否超速?說(shuō)明理由.(參考數(shù)據(jù):≈1.7,≈1.4)20.(8分)如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)D作BC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).21.(8分)在矩形ABCD中,兩條對(duì)角線相交于O,∠AOB=60°,AB=2,求AD的長(zhǎng).22.(10分)我國(guó)南水北調(diào)中線工程的起點(diǎn)是丹江口水庫(kù),按照工程計(jì)劃,需對(duì)原水庫(kù)大壩進(jìn)行混凝土培厚加高,使壩高由原來(lái)的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)23.(12分)如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上).已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果保留根號(hào))24.(8分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

判斷根的情況,只要看根的判別式△=b2?4ac的值的符號(hào)就可以了.【詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過(guò)第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個(gè)不等的實(shí)數(shù)根,故選A.【點(diǎn)睛】根的判別式2、A【解析】試題分析:第一個(gè)的進(jìn)價(jià)為:80÷(1+60%)=50元,第二個(gè)的進(jìn)價(jià)為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點(diǎn):一元一次方程的應(yīng)用3、B【解析】

根據(jù)中位數(shù)和眾數(shù)的定義分別進(jìn)行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點(diǎn)睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).4、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項(xiàng).【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項(xiàng),只有選項(xiàng)C符合題意.故選C.【點(diǎn)睛】考查了估算無(wú)理數(shù)的大小,估算無(wú)理數(shù)大小要用夾逼法.5、C【解析】

由AO∥BC,得到∠ACB=∠OAC=19°,根據(jù)圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點(diǎn)睛】本題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半定理的應(yīng)用是解此題的關(guān)鍵.6、A【解析】【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=13>0,進(jìn)而即可得出方程x2+x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.【詳解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根,故選A.【點(diǎn)睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒(méi)有實(shí)數(shù)根.7、C【解析】

由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個(gè)三角形的面積比為4:1.故選C.【點(diǎn)睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.8、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進(jìn)而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長(zhǎng)為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個(gè)圓錐的高為:(cm).故選B.點(diǎn)睛:此題主要考查了圓錐的計(jì)算,正確得出圓錐的半徑是解題關(guān)鍵.9、B【解析】試題分析:若此函數(shù)與x軸有交點(diǎn),則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當(dāng)k=3時(shí),此函數(shù)為一次函數(shù),題目要求仍然成立,故本題選B.考點(diǎn):函數(shù)圖像與x軸交點(diǎn)的特點(diǎn).10、B【解析】

題目中沒(méi)有明確腰和底,故要分情況討論,再結(jié)合三角形的三邊關(guān)系分析即可.【詳解】當(dāng)5為腰時(shí),三邊長(zhǎng)為5、5、10,而,此時(shí)無(wú)法構(gòu)成三角形;當(dāng)5為底時(shí),三邊長(zhǎng)為5、10、10,此時(shí)可以構(gòu)成三角形,它的周長(zhǎng)故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、見(jiàn)圖形【解析】分析:(Ⅰ)利用勾股定理計(jì)算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點(diǎn)G、H,連接GH交DE于F,因?yàn)镈G∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點(diǎn)I、J,連接IJ交BD于K,因?yàn)锽I∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長(zhǎng)==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點(diǎn)G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點(diǎn)I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點(diǎn)G、H,連接GH交DE于F.因?yàn)镈G∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點(diǎn)I、J,連接IJ交BD于K.因?yàn)锽I∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點(diǎn)睛:本題考查了作圖﹣應(yīng)用與設(shè)計(jì),平行線分線段成比例定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,所以中考常考題型.12、【解析】

列表得出所有等可能的情況數(shù),找出恰好是兩個(gè)連續(xù)整數(shù)的情況數(shù),即可求出所求概率.【詳解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個(gè)連續(xù)整數(shù)的情況有8種,則P(恰好是兩個(gè)連續(xù)整數(shù))=故答案為.【點(diǎn)睛】此題考查了列表法與樹(shù)狀圖法,概率=所求情況數(shù)與總情況數(shù)之比.13、y(x-2)2【解析】

先提取公因式y(tǒng),再根據(jù)完全平方公式分解即可得.【詳解】原式==,故答案為.14、【解析】

過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【詳解】如圖,過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點(diǎn)C的橫坐標(biāo)為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設(shè)點(diǎn)C(5,m),點(diǎn)D(1,m+3),∵反比例函數(shù)y=圖象過(guò)點(diǎn)C,D,∴5m=1×(m+3),∴m=,∴點(diǎn)C(5,),∴k=5×=,故答案為:【點(diǎn)睛】本題考查了反比例函數(shù)圖象點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),勾股定理,求出DE的長(zhǎng)度是本題的關(guān)鍵.15、(3,1)【解析】分析:已知拋物線解析式為頂點(diǎn)式,可直接寫(xiě)出頂點(diǎn)坐標(biāo).詳解:∵y=(x﹣3)2+1為拋物線的頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,拋物線的頂點(diǎn)坐標(biāo)為(3,1).故答案為(3,1).點(diǎn)睛:主要考查了拋物線頂點(diǎn)式的運(yùn)用.16、1【解析】解:根據(jù)翻折的性質(zhì)可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案為1.點(diǎn)睛:本題考查了角的計(jì)算,根據(jù)翻折變換的性質(zhì),得出三角形折疊以后的圖形和原圖形全等,對(duì)應(yīng)的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)(2)證明見(jiàn)解析;(3)1.【解析】

(1)由PD切⊙O于點(diǎn)C,AD與過(guò)點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;

(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;

(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因?yàn)閠an∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).【詳解】(1)證明:∵PD切⊙O于點(diǎn)C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點(diǎn)睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).18、.【解析】

首先判斷∠AED與∠ACB是一對(duì)同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標(biāo)記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).

∴∠2=∠1.

∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行).

∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等).

∵∠3=∠B(已知),

∴∠B=∠ADE(等量代換).

∴DE∥BC(同位角相等,兩直線平行).

∴∠AED=∠ACB(兩直線平行,同位角相等).【點(diǎn)睛】本題重點(diǎn)考查平行線的性質(zhì)和判定,難度適中.19、(1);(2)此校車(chē)在AB路段超速,理由見(jiàn)解析.【解析】

(1)結(jié)合三角函數(shù)的計(jì)算公式,列出等式,分別計(jì)算AD和BD的長(zhǎng)度,計(jì)算結(jié)果,即可.(2)在第一問(wèn)的基礎(chǔ)上,結(jié)合時(shí)間關(guān)系,計(jì)算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車(chē)從A到B用時(shí)1.5秒,所以速度為16÷1.5≈18.1(米/秒),因?yàn)?8.1(米/秒)=65.2千米/時(shí)>45千米/時(shí),所以此校車(chē)在AB路段超速.【點(diǎn)睛】考查三角函數(shù)計(jì)算公式,考查速度計(jì)算方法,關(guān)鍵利用正切值計(jì)算方法,計(jì)算結(jié)果,難度中等.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點(diǎn)睛】本題考查了切線的判定、相似三角形的判定與性質(zhì)等,熟練掌握切線的判定方法、相似三角形的判定與性質(zhì)定理是解題的關(guān)鍵.21、【解析】試題分析:由矩形的對(duì)角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論