湖北省利川市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題及答案解析_第1頁
湖北省利川市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題及答案解析_第2頁
湖北省利川市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題及答案解析_第3頁
湖北省利川市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題及答案解析_第4頁
湖北省利川市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題及答案解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省利川市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,把一塊含有45°角的直角三角板的兩個頂點(diǎn)放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是()A.30° B.25°C.20° D.15°2.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|3.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.34.下列二次根式中,最簡二次根式的是()A. B. C. D.5.將拋物線向上平移3個單位,再向左平移2個單位,那么得到的拋物線的解析式為()A. B. C. D.6.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°7.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.8.下列四張印有汽車品牌標(biāo)志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.9.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點(diǎn)形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.110.一次數(shù)學(xué)測試后,隨機(jī)抽取九年級某班5名學(xué)生的成績?nèi)缦拢?1,78,1,85,1.關(guān)于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是9111.在一次數(shù)學(xué)答題比賽中,五位同學(xué)答對題目的個數(shù)分別為7,5,3,5,10,則關(guān)于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.612.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關(guān)系的圖象是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.14.如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點(diǎn)H,過CD延長線上一點(diǎn)E作⊙O的切線,切點(diǎn)為F.若∠ACF=65°,則∠E=.15.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在第一象限,⊙P與x軸交于O,A兩點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),⊙P的半徑為,則點(diǎn)P的坐標(biāo)為_______.16.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數(shù)是.17.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.18.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長為__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請你直接寫出P點(diǎn)的坐標(biāo).20.(6分)如圖,拋物線與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)為(﹣3,0),點(diǎn)C的坐標(biāo)為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)Q是線段AC上的動點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.21.(6分)“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點(diǎn),為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的一種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結(jié)合統(tǒng)計圖表,回答下列問題:統(tǒng)計表中:m=,n=;請在圖1中補(bǔ)全條形統(tǒng)計圖;請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應(yīng)的圓心角是多少度?22.(8分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.求坡底C點(diǎn)到大樓距離AC的值;求斜坡CD的長度.23.(8分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作x軸的平行線與拋物線上的另一個交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點(diǎn)A、P的直線與y軸于點(diǎn)N,過點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說明理由.24.(10分)已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).(1)求實(shí)數(shù)a的值;(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).25.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.26.(12分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處,如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)動點(diǎn)M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.27.(12分)如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)C,過點(diǎn)C作直線MN,使∠BCM=2∠A.判斷直線MN與⊙O的位置關(guān)系,并說明理由;若OA=4,∠BCM=60°,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】根據(jù)題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,2、A【解析】

根據(jù)相反數(shù)的定義,對每個選項進(jìn)行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數(shù),故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點(diǎn)睛】本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.3、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點(diǎn)睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.4、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點(diǎn):最簡二次根式.5、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】將拋物線向上平移3個單位,再向左平移2個單位,根據(jù)拋物線的平移規(guī)律可得新拋物線的解析式為,故答案選A.6、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點(diǎn):平行線的性質(zhì).7、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進(jìn)行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點(diǎn)睛:在同一平面內(nèi),如果把一個圖形繞某一點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點(diǎn),就叫做對稱中心.8、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點(diǎn):中心對稱圖形的概念.9、C【解析】

∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點(diǎn)形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點(diǎn):中點(diǎn)四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.10、D【解析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點(diǎn):①眾數(shù)②中位數(shù)③平均數(shù)④極差.11、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點(diǎn)睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關(guān)鍵是熟練掌握各個知識點(diǎn)的定義以及計算公式,此題難度不大.12、C【解析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關(guān)系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關(guān)系分為兩段,先快后慢。故選:C.【點(diǎn)睛】此題考查函數(shù)的圖象,解題關(guān)鍵在于觀察圖形二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.14、50°.【解析】

解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點(diǎn)∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.15、(3,2).【解析】

過點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.16、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.17、210°【解析】

根據(jù)三角形內(nèi)角和定理得到∠B=45°,∠E=60°,根據(jù)三角形的外角的性質(zhì)計算即可.【詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)、三角形內(nèi)角和定理,掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.18、4.1【解析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據(jù)題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設(shè)AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據(jù)勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點(diǎn)代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點(diǎn)代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令A(yù)P=AB,求P.令BP=BA,求P.根據(jù)坐標(biāo)距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點(diǎn)睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.20、(1)y=x2+2x﹣3;(2)點(diǎn)P的坐標(biāo)為(2,21)或(﹣2,5);(3).【解析】

(1)先根據(jù)點(diǎn)A坐標(biāo)及對稱軸得出點(diǎn)B坐標(biāo),再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設(shè)點(diǎn)P的坐標(biāo)為(a,a2+2a﹣3),則點(diǎn)P到OC的距離為|a|.然后依據(jù)S△POC=2S△BOC列出關(guān)于a的方程,從而可求得a的值,于是可求得點(diǎn)P的坐標(biāo);(3)先求得直線AC的解析式,設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x﹣3),則點(diǎn)Q的坐標(biāo)為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關(guān)系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點(diǎn)B的坐標(biāo)為(1,0),設(shè)拋物線解析式為y=a(x+3)(x﹣1),將點(diǎn)C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設(shè)點(diǎn)P的坐標(biāo)為(a,a2+2a﹣3),則點(diǎn)P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當(dāng)a=2時,點(diǎn)P的坐標(biāo)為(2,21);當(dāng)a=﹣2時,點(diǎn)P的坐標(biāo)為(﹣2,5).∴點(diǎn)P的坐標(biāo)為(2,21)或(﹣2,5).(3)如圖所示:設(shè)AC的解析式為y=kx﹣3,將點(diǎn)A的坐標(biāo)代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x﹣3),則點(diǎn)Q的坐標(biāo)為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當(dāng)x=﹣時,QD有最大值,QD的最大值為.【點(diǎn)睛】本題主要考查了二次函數(shù)綜合題,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)和應(yīng)用.21、(1)20;15%;35%;(2)見解析;(3)126°.【解析】

(1)根據(jù)被調(diào)查學(xué)生總?cè)藬?shù),用B的人數(shù)除以被調(diào)查的學(xué)生總?cè)藬?shù)計算即可求出m,再根據(jù)各部分的百分比的和等于1計算即可求出n;(2)求出D的學(xué)生人數(shù),然后補(bǔ)全統(tǒng)計圖即可;(3)用D的百分比乘360°計算即可得解.【詳解】解:(1)非常了解的人數(shù)為20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案為20;15%;35%;(2)∵D等級的人數(shù)為:400×35%=140,∴補(bǔ)全條形統(tǒng)計圖如圖所示:(3)D部分扇形所對應(yīng)的圓心角:360°×35%=126°.【點(diǎn)睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運(yùn)用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小22、(1)坡底C點(diǎn)到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長即可;(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點(diǎn)到大樓距離AC的值是20米.(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點(diǎn)睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關(guān)鍵.23、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時,同理可得.【詳解】解:(1)將點(diǎn)A(2,0)和點(diǎn)B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點(diǎn)B作BG⊥CA,交CA的延長線于點(diǎn)G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點(diǎn)B作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點(diǎn)K(1,),設(shè)直線CK的解析式為y=hx+1,將點(diǎn)K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點(diǎn)P的坐標(biāo)為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點(diǎn)P的坐標(biāo)為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點(diǎn)D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當(dāng)1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當(dāng)m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識點(diǎn).24、(1)a=1;(2)C(0,﹣4)或(0,0).【解析】

(1)把A(3,n)代入y=(x>0)求得n的值,即可得A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入一次函數(shù)y=ax﹣2可得a的值;(2)先求出一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交點(diǎn)B的坐標(biāo),再分兩種情況(①當(dāng)C點(diǎn)在y軸的正半軸上或原點(diǎn)時;②當(dāng)C點(diǎn)在y軸的負(fù)半軸上時)求點(diǎn)C的坐標(biāo)即可.【詳解】(1)∵函數(shù)y=(x>0)的圖象過(3,n),∴3n=3,n=1,∴A(3,1)∵一次函數(shù)y=ax﹣2(a≠0)的圖象過點(diǎn)A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,∴B(0,﹣2),①當(dāng)C點(diǎn)在y軸的正半軸上或原點(diǎn)時,設(shè)C(0,m),∵S△ABC=2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②當(dāng)C點(diǎn)在y軸的負(fù)半軸上時,設(shè)(0,h),∵S△ABC=2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【點(diǎn)睛】本題主要考查了一次函數(shù)與反比例函數(shù)交點(diǎn)問題,解決第(2)問時要注意分類討論,不要漏解.25、(1)證明見解析;(2)15.【解析】

(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點(diǎn)睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活綜合運(yùn)用所學(xué)知識解決問題.26、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論