版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省葫蘆島市協(xié)作體2025屆高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位2.如圖,長方體中,,,,分別過,的兩個(gè)平行截面將長方體分成三個(gè)部分,其體積分別記為,,,.若,則截面的面積為()A. B. C. D.3.?dāng)?shù)列的一個(gè)通項(xiàng)公式為()A. B.C. D.4.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.56.已知a>0,x,y滿足約束條件,若z=2x+y的最小值為1,則a=A. B. C.1 D.27.已知一個(gè)扇形的圓心角為,半徑為1.則它的弧長為()A. B. C. D.8.如圖是某幾何體的三視圖,則該幾何體的外接球的表面積是()A. B. C. D.9.為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為()A.6 B.8 C.12 D.1810.若實(shí)數(shù)x,y滿足,則z=x+y的最小值為()A.2 B.3 C.4 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項(xiàng)的和為__.12.已知數(shù)列:,,,,,,,,,,,,,,,,,則__________.13.67是等差數(shù)列-5,1,7,13,……中第項(xiàng),則___________________.14.已知正方體的棱長為,點(diǎn)、分別為、的中點(diǎn),則點(diǎn)到平面的距離為______.15.已知函數(shù)的部分圖象如圖所示,則的單調(diào)增區(qū)間是______.16.設(shè)表示不超過的最大整數(shù),則________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知向量,又點(diǎn),,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.18.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c;已知.(1)求角B的大小;(2)若外接圓的半徑為2,求面積的最大值.19.已知向量.(1)若,且,求實(shí)數(shù)的值;(2)若,且與的夾角為,求實(shí)數(shù)的值.20.?dāng)?shù)學(xué)的發(fā)展推動(dòng)著科技的進(jìn)步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識(shí)的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比及假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為及,不考慮其它因素的影響.(1)用表示,并求實(shí)數(shù)使是等比數(shù)列;(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達(dá)到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)21.在平面直角坐標(biāo)系下,已知圓O:,直線l:()與圓O相交于A,B兩點(diǎn),且.(1)求直線l的方程;(2)若點(diǎn)E,F(xiàn)分別是圓O與x軸的左、右兩個(gè)交點(diǎn),點(diǎn)D滿足,點(diǎn)M是圓O上任意一點(diǎn),點(diǎn)N在線段上,且存在常數(shù)使得,求點(diǎn)N到直線l距離的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
函數(shù)過代入解得,再通過平移得到的圖像.【詳解】,函數(shù)過向右平移個(gè)單位得到的圖象故答案選A【點(diǎn)睛】本題考查了三角函數(shù)圖形,求函數(shù)表達(dá)式,函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)圖形的理解.2、B【解析】
解:由題意知,截面是一個(gè)矩形,并且長方體的體積V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,則12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面積是EF×EA1=43、C【解析】
利用特殊值,將代入四個(gè)選項(xiàng)即可排除錯(cuò)誤選項(xiàng).【詳解】將代入四個(gè)選項(xiàng),可得A中B中D中只有C中所以排除ABD選項(xiàng)故選:C【點(diǎn)睛】本題考查了根據(jù)幾個(gè)項(xiàng)選擇數(shù)列的通項(xiàng)公式,特殊值法是解決此類問題的簡單方法,屬于基礎(chǔ)題.4、A【解析】
一元二次不等式大于零解集是,先判斷二次項(xiàng)系數(shù)為負(fù),再根據(jù)根與系數(shù)關(guān)系,可求出a,b的值,代入解析式,求解不等式.【詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【點(diǎn)睛】對(duì)于含參數(shù)的一元二次不等式需要先判斷二次項(xiàng)系數(shù)的正負(fù),再進(jìn)一步求解參數(shù).5、B【解析】
根據(jù)程序框圖依次計(jì)算得到答案.【詳解】結(jié)束,輸出故答案選B【點(diǎn)睛】本題考查了程序框圖的計(jì)算,屬于??碱}型.6、B【解析】
畫出不等式組表示的平面區(qū)域如圖所示:當(dāng)目標(biāo)函數(shù)z=2x+y表示的直線經(jīng)過點(diǎn)A時(shí),取得最小值,而點(diǎn)A的坐標(biāo)為(1,),所以,解得,故選B.【考點(diǎn)定位】本小題考查線性規(guī)劃的基礎(chǔ)知識(shí),難度不大,線性規(guī)劃知識(shí)在高考中一般以小題的形式出現(xiàn),是高考的重點(diǎn)內(nèi)容之一,幾乎年年必考.7、C【解析】
直接利用扇形弧長公式求解即可得到結(jié)果.【詳解】由扇形弧長公式得:本題正確選項(xiàng):【點(diǎn)睛】本題考查扇形弧長公式的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】
由三視圖還原幾何體,可知該幾何體是由邊長為的正方體切割得到的四棱錐,可知所求外接球即為正方體的外接球,通過求解正方體外接球半徑,代入球的表面積公式可得到結(jié)果.【詳解】由三視圖可知,幾何體為如下圖所示的四棱錐:由上圖可知:四棱錐可由邊長為的正方體切割得到該正方體的外接球即為四棱錐的外接球四棱錐的外接球半徑外接球的表面積故選:【點(diǎn)睛】本題考查棱錐外接球表面積的求解問題,關(guān)鍵是能夠通過三視圖還原幾何體,并將幾何體放入正方體中,通過求解正方體的外接球表面積得到結(jié)果;需明確正方體外接球表面積為其體對(duì)角線長的一半.9、C【解析】試題分析:由直方圖可得分布在區(qū)間第一組與第二組共有21人,分布在區(qū)間第一組與第二組的頻率分別為1.24,1.16,所以第一組有12人,第二組8人,第三組的頻率為1.36,所以第三組的人數(shù):18人,第三組中沒有療效的有6人,第三組中有療效的有12人.考點(diǎn):頻率分布直方圖10、D【解析】
由約束條件畫出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由實(shí)數(shù),滿足作出可行域,如圖:聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最小,此時(shí)有最小值為.故選:D.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:∵數(shù)列滿足,且,∴當(dāng)時(shí),.當(dāng)時(shí),上式也成立,∴.∴.∴數(shù)列的前項(xiàng)的和.∴數(shù)列的前項(xiàng)的和為.故答案為.考點(diǎn):(1)數(shù)列遞推式;(2)數(shù)列求和.12、【解析】
根據(jù)數(shù)列的規(guī)律和可知的取值為,則分母為;又為分母為的項(xiàng)中的第項(xiàng),則分子為,從而得到結(jié)果.【詳解】當(dāng)時(shí),;當(dāng)時(shí),的分母為:又的分子為:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)數(shù)列的規(guī)律求解數(shù)列中的項(xiàng),關(guān)鍵是能夠根據(jù)分子的變化特點(diǎn)確定的取值.13、13【解析】
根據(jù)數(shù)列寫出等差數(shù)列通項(xiàng)公式,再令算出即可.【詳解】由題意,首項(xiàng)為-5,公差為,則等差數(shù)列通項(xiàng)公式,令,則故答案為:13.【點(diǎn)睛】等差數(shù)列首項(xiàng)為公差為,則通項(xiàng)公式14、【解析】
作出圖形,取的中點(diǎn),連接,證明平面,可知點(diǎn)平面的距離等于點(diǎn)到平面的距離,然后利用等體積法計(jì)算出點(diǎn)到平面的距離,即為所求.【詳解】如下圖所示,取的中點(diǎn),連接,在正方體中,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點(diǎn)平面的距離等于點(diǎn)到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設(shè)點(diǎn)到平面的距離為,則,.故答案為:.【點(diǎn)睛】本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.15、(區(qū)間端點(diǎn)開閉均可)【解析】
由已知函數(shù)圖象求得,進(jìn)一步得到,再由五點(diǎn)作圖的第二點(diǎn)求得,則得到函數(shù)的解析式,然后利用復(fù)合函數(shù)的單調(diào)性求出的單調(diào)增區(qū)間.【詳解】由圖可知,,則,.又,.則.由,,解得,.的單調(diào)增區(qū)間是.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求函數(shù)解析式以及復(fù)合函數(shù)單調(diào)區(qū)間的求法.16、【解析】
根據(jù)1弧度約等于且正弦函數(shù)值域?yàn)?故可分別計(jì)算求和中的每項(xiàng)的正負(fù)即可.【詳解】故答案為:【點(diǎn)睛】本題主要考查了三角函數(shù)的計(jì)算,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)當(dāng)時(shí)的值域?yàn)?時(shí)的值域?yàn)?【解析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結(jié)合向量與向量共線,常數(shù),建立的表達(dá)式,代入,對(duì)分類討論,綜合三角函數(shù)和二次函數(shù)的圖象與性質(zhì),即可求出值域.詳解:(1),∵,且,∴,,解得,時(shí),;時(shí),.∴向量或.(2),∵向量與向量共線,常數(shù),∴,∴.①當(dāng)即時(shí),當(dāng)時(shí),取得最大值,時(shí),取得最小值,此時(shí)函數(shù)的值域?yàn)?②當(dāng)即時(shí),當(dāng)時(shí),取得最大值,時(shí),取得最小值,此時(shí)函數(shù)的值域?yàn)?綜上所述,當(dāng)時(shí)的值域?yàn)?時(shí)的值域?yàn)?點(diǎn)睛:本題考查了向量的坐標(biāo)運(yùn)算、向量垂直和共線的定理、模的計(jì)算、三角函數(shù)的值域等問題,考查了分類討論方法、推理與計(jì)算能力.18、(1)(2)【解析】
(1)利用正弦定理與余弦的差角公式運(yùn)算求解即可.(2)根據(jù)正弦定理可得,再利用余弦定理與基本不等式求得再代入面積求最大值即可.【詳解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)結(jié)合(1)由正弦定理可知,由余弦定理可知,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,所以面積的最大值為.【點(diǎn)睛】本題主要考查了正余弦定理與三角形面積公式在解三角形中的運(yùn)用.同時(shí)考查了根據(jù)基本不等式求解三角形面積的最值問題.屬于中檔題.19、(1);(2).【解析】
(1)根據(jù)平面向量加法和數(shù)乘的坐標(biāo)表示公式、數(shù)量積的坐標(biāo)表示公式,結(jié)合兩個(gè)互相垂直的平面向量數(shù)量積為零,進(jìn)行求解即可;(2)利用平面向量夾角公式進(jìn)行求解即可.【詳解】(1)當(dāng)時(shí),.因?yàn)?,所以;?)當(dāng)時(shí),所以有,因?yàn)榕c的夾角為,所以有.【點(diǎn)睛】本題考查了平面向量運(yùn)算的坐標(biāo)表示公式,考查了平面向量夾角公式,考查了數(shù)學(xué)運(yùn)算能力.20、(1),;(2)見解析【解析】
(1)根據(jù)題意經(jīng)過次技術(shù)更新后,通過整理得到,構(gòu)造是等比數(shù)列,求出,得證;(2)由(1)可求出通項(xiàng),令,通過相關(guān)計(jì)算即可求出n的最小值,從而得到答案.【詳解】(1)由題意,可設(shè)5商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品的占比分別為.易知經(jīng)過次技術(shù)更新后,則,①由①式,可設(shè),對(duì)比①式可知.又.從而當(dāng)時(shí),是以為首項(xiàng),為公比的等比數(shù)列.(2)由(1)可知,所以經(jīng)過次技術(shù)更形后,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比.由題意,令,得.故,即至少經(jīng)過6次技術(shù)更新,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能達(dá)到75%以上.【點(diǎn)睛】本題主要考查數(shù)列的實(shí)際應(yīng)用,等比數(shù)列的證明,數(shù)列與不等式的相關(guān)計(jì)算,綜合性強(qiáng),意在考查學(xué)生的閱讀理解能力,轉(zhuǎn)化能力,分析能力,計(jì)算能力,難度較大.21、(1);(2).【解析】
(1)等價(jià)于圓心O到直線l的距離,再由點(diǎn)到直線的距離公式求解即可;(2)先設(shè)點(diǎn),再結(jié)合題意可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年汽車銷售合同擔(dān)保服務(wù)模板附車輛改裝服務(wù)3篇
- 2024年短期公租房租賃合同
- 崗位職責(zé)表課程設(shè)計(jì)
- 2024幼兒園發(fā)展規(guī)劃(35篇)
- 基于機(jī)器學(xué)習(xí)的古代繪畫修復(fù)與復(fù)原技術(shù)研究
- 2024年?duì)I銷工作計(jì)劃(59篇)
- 沼氣池儲(chǔ)氣罐課程設(shè)計(jì)
- 線描西蘭花課程設(shè)計(jì)
- 英漢互譯系統(tǒng)的課程設(shè)計(jì)
- 物流行業(yè)運(yùn)輸司機(jī)工作總結(jié)
- 公務(wù)員調(diào)任(轉(zhuǎn)任)審批表 - 陽春人才網(wǎng)
- IE部成立工作規(guī)劃
- 單體調(diào)試及試運(yùn)方案
- 2023-2024學(xué)年浙江省杭州市城區(qū)數(shù)學(xué)四年級(jí)第一學(xué)期期末學(xué)業(yè)水平測試試題含答案
- 網(wǎng)球技術(shù)與戰(zhàn)術(shù)-華東師范大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 2023年35kV集電線路直埋施工方案
- 思政教師培訓(xùn)心得體會(huì)2021
- HLB值的實(shí)驗(yàn)測定方法
- 2023年《病歷書寫基本規(guī)范》年度版
- 防止電力生產(chǎn)事故的-二十五項(xiàng)重點(diǎn)要求2023版
- 代理記賬機(jī)構(gòu)代理記賬業(yè)務(wù)規(guī)范
評(píng)論
0/150
提交評(píng)論