2025屆河北省景縣中學高一下數(shù)學期末考試試題含解析_第1頁
2025屆河北省景縣中學高一下數(shù)學期末考試試題含解析_第2頁
2025屆河北省景縣中學高一下數(shù)學期末考試試題含解析_第3頁
2025屆河北省景縣中學高一下數(shù)學期末考試試題含解析_第4頁
2025屆河北省景縣中學高一下數(shù)學期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆河北省景縣中學高一下數(shù)學期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”.其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為()A.48里 B.24里 C.12里 D.6里2.以分別表示等差數(shù)列的前項和,若,則的值為A.7 B. C. D.3.中,在上,,是上的點,,則m的值()A. B. C. D.4.從裝有4個紅球和3個白球的袋中任取2個球,那么下列事件中,是對立事件的是()A.至少有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;恰好有2個白球 D.至少有1個白球;都是白球5.已知變量,之間的線性回歸方程為,且變量,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法中錯誤的是()681012632A.變量,之間呈現(xiàn)負相關(guān)關(guān)系B.的值等于5C.變量,之間的相關(guān)系數(shù)D.由表格數(shù)據(jù)知,該回歸直線必過點6.設(shè),則()A. B.C. D.7.已知與的夾角為,,,則()A. B. C. D.8.函數(shù)的定義域為R,數(shù)列是公差為的等差數(shù)列,若,,則()A.恒為負數(shù) B.恒為正數(shù)C.當時,恒為正數(shù);當時,恒為負數(shù) D.當時,恒為負數(shù);當時,恒為正數(shù)9.甲、乙兩名籃球運動員最近五場比賽的得分如莖葉圖所示,則()A.甲的中位數(shù)和平均數(shù)都比乙高B.甲的中位數(shù)和平均數(shù)都比乙低C.甲的中位數(shù)比乙的中位數(shù)高,但平均數(shù)比乙的平均數(shù)低D.甲的中位數(shù)比乙的中位數(shù)低,但平均數(shù)比乙的平均數(shù)高10.已知點在直線上,若存在滿足該條件的使得不等式成立,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若對任意,均有,則的最小值為______;12.數(shù)列中,,,,則的前2018項和為______.13.在中,,,為角,,所對的邊,點為的重心,若,則的取值范圍為______.14.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù).現(xiàn)從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為.15.在中,已知,則____________.16.已知等邊,為中點,若點是所在平面上一點,且滿足,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)請確定是否是數(shù)列中的項?18.已知f(α)=,其中α≠kπ(k∈Z).(1)化簡f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.19.己知函數(shù).(1)若,,求;(2)當為何值時,取得最大值,并求出最大值.20.在銳角中,角,,所對的邊分別為,,.已知,.(1)求的值;(2)若,求的面積.21.如圖,是菱形,對角線與的交點為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)等比數(shù)列前項和公式列方程,求得首項的值,進而求得的值.【詳解】設(shè)第一天走,公比,所以,解得,所以.故選C.【點睛】本小題主要考查等比數(shù)列前項和的基本量計算,考查等比數(shù)列的通項公式,考查中國古典數(shù)學文化,屬于基礎(chǔ)題.2、B【解析】

根據(jù)等差數(shù)列前n項和的性質(zhì),當n為奇數(shù)時,,即可把轉(zhuǎn)化為求解.【詳解】因為數(shù)列是等差數(shù)列,所以,故,選B.【點睛】本題主要考查了等差數(shù)列前n項和的性質(zhì),屬于中檔題.3、A【解析】由題意得:則故選4、A【解析】

根據(jù)對立事件的定義判斷.【詳解】從裝有4個紅球和3個白球的袋內(nèi)任取2個球,在A中,“至少有1個白球”與“都是紅球”不能同時發(fā)生且必有一個事件會發(fā)生,是對立事件.在B中,“至少有1個白球”與“至少有1個紅球”可以同時發(fā)生,不是互斥事件.在C中,“恰好有1個白球”與“恰好有2個白球”是互斥事件,但不是對立事件.在D中,“至少有1個白球”與“都是白球”不是互斥事件.故選:A.5、C【解析】分析:根據(jù)平均數(shù)的計算公式,求得樣本中心為,代入回歸直線的方程,即可求解,得到樣本中心,再根據(jù)之間的變化趨勢,可得其負相關(guān)關(guān)系,即可得到答案.詳解:由題意,根據(jù)上表可知,即數(shù)據(jù)的樣本中心為,把樣本中心代入回歸直線的方程,可得,解得,則,即數(shù)據(jù)的樣本中心為,由上表中的數(shù)據(jù)可判定,變量之間隨著的增大,值變小,所以呈現(xiàn)負相關(guān)關(guān)系,由于回歸方程可知,回歸系數(shù),而不是,所以C是錯誤的,故選C.點睛:本題主要考查了數(shù)據(jù)的平均數(shù)的計算公式,回歸直線方程的特點,以及相關(guān)關(guān)系的判定等基礎(chǔ)知識的應(yīng)用,其中熟記回歸分析的基本知識點是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力.6、A【解析】

先由誘導(dǎo)公式得到a=cos2019°=–cos39°,再根據(jù)39°∈(30°,45°)得到大致范圍.【詳解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故選A.【點睛】這個題目考查了三角函數(shù)的誘導(dǎo)公式的應(yīng)用,以及特殊角的三角函數(shù)值的應(yīng)用,題目比較基礎(chǔ).7、A【解析】

將等式兩邊平方,利用平面向量數(shù)量積的運算律和定義得出關(guān)于的二次方程,解出即可.【詳解】將等式兩邊平方得,,即,整理得,,解得,故選:A.【點睛】本題考查平面向量模的計算,在計算向量模的時候,一般將向量模的等式兩邊平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查運算求解能力,屬于中等題.8、A【解析】

由函數(shù)的解析式可得函數(shù)是奇函數(shù),且為單調(diào)遞增函數(shù),分和兩種情況討論,分別利用函數(shù)的奇偶性和單調(diào)性,即可求解,得到結(jié)論.【詳解】由題意,因為函數(shù),根據(jù)冪函數(shù)和反正切函數(shù)的性質(zhì),可得函數(shù)在為單調(diào)遞增函數(shù),且滿足,所以函數(shù)為奇函數(shù),因為數(shù)列是公差為的等差數(shù)列,且,則①當時,由,可得,所以,所以,同理可得:,所以,②當時,由,則,所以綜上可得,實數(shù)恒為負數(shù).故選:A.【點睛】本題主要考查了函數(shù)的單調(diào)性與奇偶性的應(yīng)用,以及等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中合理利用等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.9、B【解析】

分別計算出兩組數(shù)據(jù)的中位數(shù)和平均數(shù)即可得出選項.【詳解】根據(jù)題意:甲的平均數(shù)為:,中位數(shù)為29,乙的平均數(shù)為:,中位數(shù)為30,所以甲的中位數(shù)和平均數(shù)都比乙低.故選:B【點睛】此題考查根據(jù)莖葉圖表示的數(shù)據(jù)分別辨析平均數(shù)和中位數(shù)的大小關(guān)系,分別計算求解即可得出答案.10、B【解析】

根據(jù)題干得到,存在滿足該條件的使得不等式成立,即,再根據(jù)均值不等式得到最小值為9,再由二次不等式的解法得到結(jié)果.【詳解】點在直線上,故得到,存在滿足該條件的使得不等式成立,即故原題轉(zhuǎn)化為故答案為:B【點睛】本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.解決二元的范圍或者最值問題,常用的方法有:不等式的應(yīng)用,二元化一元的應(yīng)用,線性規(guī)劃的應(yīng)用,等.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)對任意,均有,分析得到,再根據(jù)正弦型函數(shù)的最值公式求解出的最小值.【詳解】因為對任意,均有,所以,所以,所以,所以.故答案為:.【點睛】本題考查正弦型函數(shù)的應(yīng)用,難度一般.正弦型函數(shù)的最值一定是在對稱軸的位置取到,因此正弦型函數(shù)取最大值與最小值時對應(yīng)的自變量的差的絕對值最小為,此時最大值與最小值對應(yīng)的對稱軸相鄰.12、2【解析】

直接利用遞推關(guān)系式和數(shù)列的周期求出結(jié)果即可.【詳解】數(shù)列{an}中,a1=1,a2=2,an+2=an+1﹣an,則:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:數(shù)列的周期為1.a(chǎn)1+a2+a2+a4+a5+a1=0,數(shù)列{an}的前2018項和為:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案為:2【點睛】本題考查的知識要點:數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列的周期的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.13、【解析】

在中,延長交于,由重心的性質(zhì),找到、和的關(guān)系,在和中利用余弦定理分別表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范圍求解即可.【詳解】畫出,連接,并延長交于,因為是的重心,所以為中點,因為,所以,由重心的性質(zhì),,在中,由余弦定理得,,在中,由余弦定理得,因為,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案為:【點睛】本題主要考查三角形重心的性質(zhì)、余弦定理解三角形和基本不等式求最值,考查學生的分析轉(zhuǎn)化能力,屬于中檔題.14、.【解析】試題分析:從中任取3個不同的數(shù),有,,,,,,,,,共10種,其中只有為勾股數(shù),故這3個數(shù)構(gòu)成一組勾股數(shù)的概率為.考點:用列舉法求隨機事件的概率.15、84【解析】

根據(jù)余弦定理以及同角公式求得,再根據(jù)面積公式可得答案.【詳解】由余弦定理可得,又,所以,所以.故答案為:84【點睛】本題考查了余弦定理,考查了同角公式,考查了三角形的面積公式,屬于基礎(chǔ)題.16、0【解析】

利用向量加、減法的幾何意義可得,再利用向量數(shù)量積的定義即可求解.【詳解】根據(jù)向量減法的幾何意義可得:,即,所以.故答案為:0【點睛】本題考查了向量的加、減法的幾何意義以及向量的數(shù)量積,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是數(shù)列中的第項【解析】

(1)直接利用等差數(shù)列的公式計算得到通項公式.(2)將3998代入通項公式,是否有整數(shù)解.【詳解】(1)設(shè)數(shù)列的公差為,由題意有,解得則數(shù)列的通項公式為,(2)假設(shè)是數(shù)列中的項,有,得,故是數(shù)列中的第項【點睛】本題考查了等差數(shù)列的公式,屬于簡單題.18、(1)(2)【解析】

(1)直接利用三角函數(shù)的誘導(dǎo)公式,化簡運算,即可求解;(2)由,得,進一步求得,得到sin2與cos2,再由sin(2+)展開兩角和的正弦求解.【詳解】(1)由題意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【點睛】本題主要考查了三角函數(shù)的化簡求值,及誘導(dǎo)公式及兩角差的正弦公式的應(yīng)用,其中解答中熟記三家函數(shù)的恒等變換的公式,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1);(1),1.【解析】

(1)由題得,再求出x的值;(1)先化簡得到,再利用三角函數(shù)的性質(zhì)求函數(shù)的最大值及此時x的值.【詳解】(1)令,則,因為,所以.(1),當,即時,的最大值為1.【點睛】本題主要考查解簡單的三角方程,考查三角函數(shù)的最值,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.20、(1)2;(2)3.【解析】

(1)利用正弦定理可得,消元后可得關(guān)于的三角方程,從該方程可得的值.(2)利用同角的三角函數(shù)的基本關(guān)系式結(jié)合(1)中的結(jié)果可得,再根據(jù)題設(shè)條件得到后再利用正弦定理可求的值,從而得到所求的面積.【詳解】(1)在由正弦定理得,①,因為,所以,又因為,所以,整理得到,故.(2)在銳角中,因為,所以,將代入①得.在由正弦定理得,所以.【點睛】在解三角形中,如果題設(shè)條件是邊角的混合關(guān)系,那么我們可以利用正弦定理或余弦定理把這種混合關(guān)系式轉(zhuǎn)化為邊的關(guān)系式或角的關(guān)系式.另外,三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道兩角及一邊,用正弦定理.另外,如果知道兩個角的三角函數(shù)值,則必定可以求第三角的三角函數(shù)值,此時涉及到的公式有同角的三角函數(shù)的基本關(guān)系式和兩角和差的三角公式、倍角公式等.21、(1)證明見解析;(2)證明見解析;(3)【解析】

(1)取的中點,連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論