版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆阜陽市重點中學(xué)高一下數(shù)學(xué)期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數(shù)列an中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量OA、OB、OC滿足OC=a1A.1005 B.1006 C.2010 D.20122.已知函數(shù)圖象的一條對稱軸是,則函數(shù)的最大值為()A.5 B.3 C. D.3.若直線與圓有公共點,則實數(shù)的取值范圍是()A. B. C. D.4.根據(jù)頻數(shù)分布表,可以估計在這堆蘋果中,質(zhì)量大于130克的蘋果數(shù)約占蘋果總數(shù)的()分組頻數(shù)13462A. B. C. D.5.棱長為2的正四面體的表面積是()A. B.4 C. D.166.用數(shù)學(xué)歸納法證明這一不等式時,應(yīng)注意必須為()A. B., C., D.,7.若函數(shù)有零點,則實數(shù)的取值范圍為()A. B. C. D.8.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.259.已知是兩條異面直線,,那么與的位置關(guān)系()A.一定是異面 B.一定是相交 C.不可能平行 D.不可能垂直10.直線的傾斜角為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,,,則______.12.設(shè)是數(shù)列的前項和,且,,則__________.13.已知,若,則______.14.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.15.不等式的解集為________16.設(shè)數(shù)列的通項公式,則數(shù)列的前20項和為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.18.已知數(shù)列的前項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè),數(shù)列的前項和為,求證:.19.若x,y為正實數(shù),求證:,并說明等號成立的條件.20.已知函數(shù),其圖象與軸相鄰的兩個交點的距離為.(1)求函數(shù)的解析式;(2)若將的圖象向左平移個長度單位得到函數(shù)的圖象恰好經(jīng)過點,求當(dāng)取得最小值時,在上的單調(diào)區(qū)間.21.已知數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;(3)若對任意的,都有成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用等差數(shù)列的定義可知數(shù)列an為等差數(shù)列,由向量中三點共線的結(jié)論得出a1+【詳解】∵an+1=an∵三點A、B、C共線且該直線不過O點,OC=a1因此,S2010故選:A.【點睛】本題考查等差數(shù)列求和,涉及等差數(shù)列的定義以及向量中三點共線結(jié)論的應(yīng)用,考查計算能力,屬于中等題.2、B【解析】
函數(shù)圖象的一條對稱軸是,可得,解得.可得函數(shù),再利用輔助角公式、倍角公式、三角函數(shù)的有界性即可得出.【詳解】函數(shù)圖象的一條對稱軸是,,解得.則函數(shù)當(dāng)時取等號.函數(shù)的最大值為1.故選.【點睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用以及利用二倍角公式和輔助角公式進行三角恒等變換.3、C【解析】由題意得圓心為,半徑為.圓心到直線的距離為,由直線與圓有公共點可得,即,解得.∴實數(shù)a取值范圍是.選C.4、C【解析】
根據(jù)頻數(shù)分布表計算出質(zhì)量大于130克的蘋果的頻率,由此得出正確選項.【詳解】根據(jù)頻數(shù)分布表可知,所以質(zhì)量大于克的蘋果數(shù)約占蘋果總數(shù)的.故選:C【點睛】本小題主要考查頻數(shù)分析表的閱讀與應(yīng)用,屬于基礎(chǔ)題.5、C【解析】
根據(jù)題意求出一個面的面積,然后乘以4即可得到正四面體的表面積.【詳解】每個面的面積為,∴正四面體的表面積為.【點睛】本題考查正四面體的表面積,正四面體四個面均為正三角形.6、D【解析】
根據(jù)題意驗證,,時,不等式不成立,當(dāng)時,不等式成立,即可得出答案.【詳解】解:當(dāng),,時,顯然不等式不成立,當(dāng)時,不等式成立,故用數(shù)學(xué)歸納法證明這一不等式時,應(yīng)注意必須為,故選:.【點睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
令,得,再令,得出,并構(gòu)造函數(shù),將問題轉(zhuǎn)化為直線與函數(shù)在區(qū)間有交點,利用數(shù)形結(jié)合思想可得出實數(shù)的取值范圍.【詳解】令,得,,令,則,所以,,構(gòu)造函數(shù),其中,由于,,,所以,當(dāng)時,直線與函數(shù)在區(qū)間有交點,因此,實數(shù)的取值范圍是,故選D.【點睛】本題考查函數(shù)的零點問題,在求解含參函數(shù)零點的問題時,若函數(shù)中只含有單一參數(shù),可以采用參變量分離法轉(zhuǎn)化為參數(shù)直線與定函數(shù)圖象的交點個數(shù)問題,難點在于利用換元法將函數(shù)解析式化簡,考查數(shù)形結(jié)合思想,屬于中等題.8、B【解析】
計算出向量的坐標(biāo),再利用向量的求模公式計算出的值.【詳解】由題意可得,因此,,故選B.【點睛】本題考查向量模的計算,解題的關(guān)鍵就是求出向量的坐標(biāo),并利用坐標(biāo)求出向量的模,考查運算求解能力,屬于基礎(chǔ)題.9、C【解析】
由平行公理,若,因為,所以,與、是兩條異面直線矛盾,異面和相交均有可能.【詳解】、是兩條異面直線,,那么與異面和相交均有可能,但不會平行.因為若,因為,由平行公理得,與、是兩條異面直線矛盾.故選C.【點睛】本題主要考查空間的兩條直線的位置關(guān)系的判斷、平行公理等知識,考查邏輯推理能力,屬于基礎(chǔ)題.10、D【解析】
把直線方程的一般式方程化為斜截式方程,求出斜率,根據(jù)斜率與傾斜角的關(guān)系,求出傾斜角.【詳解】,設(shè)直線的傾斜角為,,故本題選D.【點睛】本題考查了直線方程之間的轉(zhuǎn)化、利用斜率求直線的傾斜角問題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先求出的平方值,再開方得到所求結(jié)果.【詳解】【點睛】本題考查求解復(fù)合向量模長的問題,求解此類問題的關(guān)鍵是先求模長的平方,將其轉(zhuǎn)化為已知向量運算的問題.12、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項,-1為公差的等差的數(shù)列,所以,即.【點睛】這類型題使用的公式是,一般條件是,若是消,就需當(dāng)時構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項公式.13、【解析】
由條件利用正切函數(shù)的單調(diào)性直接求出的值.【詳解】解:函數(shù)在上單調(diào)遞增,且,若,則,故答案為:.【點睛】本題主要考查正切函數(shù)的單調(diào)性,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.14、15【解析】
解:設(shè)作出與已知直線平行且與圓相切的直線,
切點分別為,如圖所示
則動點C在圓上移動時,若C與點重合時,
△ABC面積達到最小值;而C與點重合時,△ABC面積達到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點、點到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點
∴點、點到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:1515、【解析】因為所以,即不等式的解集為.16、【解析】
對去絕對值,得,再求得的前項和,代入=20即可求解【詳解】由題的前n項和為的前20項和,代入可得.故答案為:260【點睛】本題考查等差數(shù)列的前項和,去絕對值是關(guān)鍵,考查計算能力,是基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=3n–4,(3)Sn=n3–8n,最小值為–1.【解析】分析:(1)根據(jù)等差數(shù)列前n項和公式,求出公差,再代入等差數(shù)列通項公式得結(jié)果,(3)根據(jù)等差數(shù)列前n項和公式得的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)對稱軸以及自變量為正整數(shù)求函數(shù)最值.詳解:(1)設(shè){an}的公差為d,由題意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通項公式為an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以當(dāng)n=4時,Sn取得最小值,最小值為–1.點睛:數(shù)列是特殊的函數(shù),研究數(shù)列最值問題,可利用函數(shù)性質(zhì),但要注意其定義域為正整數(shù)集這一限制條件.18、(1)見證明;(2)見證明【解析】
(1)由,得,兩式作差可得,利用等比數(shù)列的定義,即可作出證明;(2)由(1)可得,得到,利用裂項法求得數(shù)列的和,即可作出證明.【詳解】(1)證明:由,得,兩式作差可得:,即,即,又,得,所以數(shù)列是首項為,公比為的等比數(shù)列;(2)由(1)可得,數(shù)列的通項公式為,又由,所以.所以.【點睛】本題主要考查了等比數(shù)列的定義,以及數(shù)列“裂項法”求和的應(yīng)用,其中解答中熟記等比數(shù)列的定義和通項,以及合理利用數(shù)列的“裂項法”求得數(shù)列的前n項和是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、當(dāng)且僅當(dāng)時取等號,證明見解析【解析】
由題意,.【詳解】由題意,可得:,當(dāng)且僅當(dāng)時取等號,又,當(dāng)且僅當(dāng)時取等號,聯(lián)立解得,故,當(dāng)且僅當(dāng)時取等號.【點睛】本題考查了基本不等式的運用,考查了不等式的證明,屬于中檔題.20、(1)(2)單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.【解析】
(1)利用兩角差的正弦公式,降冪公式以及輔助角公式化簡函數(shù)解析式,根據(jù)其圖象與軸相鄰的兩個交點的距離為,得出周期,利用周期公式得出,即可得出該函數(shù)的解析式;(2)根據(jù)平移變換得出,再由函數(shù)的圖象經(jīng)過點,結(jié)合正弦函數(shù)的性質(zhì)得出的最小值,進而得出,利用整體法結(jié)合正弦函數(shù)的單調(diào)性得出該函數(shù)在上的單調(diào)區(qū)間.【詳解】解:(1)由已知函數(shù)的周期,,∴.(2)將的圖象向左平移個長度單位得到的圖象∴,∵函數(shù)的圖象經(jīng)過點∴,即∴,∴,∵,∴當(dāng),取最小值,此時最小值為此時,.令,則當(dāng)或,即當(dāng)或時,函數(shù)單調(diào)遞增當(dāng),即時,函數(shù)單調(diào)遞減.∴在上的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.【點睛】本題主要考查了由正弦函數(shù)的性質(zhì)確定解析式以及正弦型函數(shù)的單調(diào)性,屬于中檔題.21、(1)(2)(3)【解析】
(1)利用遞推公式求出,,遞推到當(dāng)時,,兩個式子相減,得到,進而求出數(shù)列的通項公式;(2)運用錯位相減法可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級語文橋聽評課記錄
- 北師大版數(shù)學(xué)八年級上冊4《平行線的性質(zhì)》聽評課記錄1
- 人教版數(shù)學(xué)七年級上冊《模式3:整式的加減》聽評課記錄
- 北師大版道德與法治八年級上冊第1課第3站《關(guān)愛他人生命》聽課評課記錄
- 八年級上冊歷史人教版同步聽課評課記錄第18課《從九一八事變到西安事變》
- 小學(xué)二年級上冊數(shù)學(xué)口算競賽題
- 北師大版歷史九年級上冊第11課《英國資產(chǎn)階級革命》聽課評課記錄1
- (新人教版)八年級歷史上冊期末復(fù)習(xí)-第七八單元解放戰(zhàn)爭近代經(jīng)濟社會生活與教育文化事業(yè)的發(fā)展-復(fù)習(xí)聽課評課記錄
- 人民版道德與法治九年級上冊2.2《扛起你的責(zé)任》聽課評課記錄
- 水泥攪拌樁施工分包合同范本
- 浙江省杭州市2024年中考語文試卷(含答案)
- 世說新語原文及翻譯-副本
- 電力通信光纜檢修標(biāo)準(zhǔn)化作業(yè)指導(dǎo)書
- 種植二期手種植義齒II期手術(shù)護理配合流程
- 安全隱患舉報獎勵制度
- 2024-2025學(xué)年深圳市南山區(qū)六年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 工貿(mào)行業(yè)企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)實施指南
- T-CACM 1560.6-2023 中醫(yī)養(yǎng)生保健服務(wù)(非醫(yī)療)技術(shù)操作規(guī)范穴位貼敷
- 2024年全國統(tǒng)一考試高考新課標(biāo)Ⅱ卷數(shù)學(xué)試題(真題+答案)
- 人教版小學(xué)數(shù)學(xué)一年級下冊第1-4單元教材分析
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
評論
0/150
提交評論