版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西省朔州市應(yīng)縣第一中學(xué)2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個圓柱的側(cè)面展開圖是一個正方形,這個圓柱全面積與側(cè)面積的比為()A. B. C. D.2.?dāng)?shù)列的通項,其前項之和為,則在平面直角坐標(biāo)系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.93.已知函數(shù)的圖象如圖所示,則的解析式為()A. B.C. D.4.若,則()A. B. C. D.5.在ΔABC中,角A,B,C的對邊分別為a,b,c,若sinA4a=A.-45 B.35 C.6.已知函數(shù),若存在,且,使成立,則以下對實數(shù)的推述正確的是()A. B. C. D.7.直線與平行,則的值為()A. B.或 C.0 D.-2或08.若,則在中,正數(shù)的個數(shù)是()A.16 B.72 C.86 D.1009.若函數(shù),則()A.9 B.1 C. D.010.若曲線表示橢圓,則的取值范圍是()A. B. C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.在空間直角坐標(biāo)系中,點關(guān)于原點的對稱點的坐標(biāo)為__________.12.已知不等式的解集為,則________.13.求374與238的最大公約數(shù)結(jié)果用5進制表示為_________.14.和2的等差中項的值是______.15.公比為2的等比數(shù)列的各項都是正數(shù),且,則的值為___________16.直線與直線的交點為,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在直角中,,延長至點D,使得,連接.(1)若,求的值;(2)求角D的最大值.18.?dāng)?shù)學(xué)的發(fā)展推動著科技的進步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比及假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為及,不考慮其它因素的影響.(1)用表示,并求實數(shù)使是等比數(shù)列;(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)19.給定常數(shù),定義函數(shù),數(shù)列滿足.(1)若,求及;(2)求證:對任意,;(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.20.如圖,在中,角,,的對邊分別為,,,且.(1)求的大??;(2)若,為外一點,,,求四邊形面積的最大值.21.從含有兩件正品和一件次品的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求:(1)一切可能的結(jié)果組成的基本事件空間.(2)取出的兩件產(chǎn)品中恰有一件次品的概率
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】解:設(shè)圓柱底面積半徑為r,則高為2πr,全面積:側(cè)面積=[(2πr)2+2πr2]:(2πr)2這個圓柱全面積與側(cè)面積的比為,故選A2、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點:數(shù)列求和及直線方程.3、D【解析】
由函數(shù)圖象求出,由周期求出,由五點發(fā)作圖求出的值,即可求出函數(shù)的解析式.【詳解】解:根據(jù)函數(shù)的圖象,可得,,所以.再根據(jù)五點法作圖可得,所以,故.故選:D.【點睛】本題主要考查由函數(shù)的部分圖像求解析式,屬于基礎(chǔ)題.4、C【解析】
由及即可得解.【詳解】由,可得.故選C.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系及二倍角公式,屬于基礎(chǔ)題.5、B【解析】
由正弦定理可得3sinBsinA=4sin【詳解】∵sinA4a∵sinA>0,∴tanB=4故選:B.【點睛】本題考查了正弦定理和同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.6、A【解析】
先根據(jù)的圖象性質(zhì),推得函數(shù)的單調(diào)區(qū)間,再依據(jù)條件分析求解.【詳解】解:是把的圖象中軸下方的部分對稱到軸上方,函數(shù)在上遞減;在上遞增.函數(shù)的圖象可由的圖象向右平移1個單位而得,在,上遞減,在,上遞增,若存在,,,,使成立,故選:.【點睛】本題考查單調(diào)函數(shù)的性質(zhì)、反正切函數(shù)的圖象性質(zhì)及函數(shù)的圖象的平移.圖象可由的圖象向左、向右平移個單位得到,屬于基礎(chǔ)題.7、A【解析】
若直線與平行,則,解出a值后,驗證兩條直線是否重合,可得答案.【詳解】若直線與平行,
則,
解得或,
又時,直線與表示同一條直線,
故,
故選A.本題考查的知識點是直線的一般式方程,直線的平行關(guān)系,正確理解直線平行的幾何意義是解答的關(guān)鍵.8、C【解析】
令,則,當(dāng)1≤n≤14時,畫出角序列終邊如圖,其終邊兩兩關(guān)于x軸對稱,故有均為正數(shù),而,由周期性可知,當(dāng)14k-13≤n≤14k時,Sn>0,而,其中k=1,2,…,7,所以在中有14個為0,其余都是正數(shù),即正數(shù)共有100-14=86個,故選C.9、B【解析】
根據(jù)的解析式即可求出,進而求出的值.【詳解】∵,∴,故,故選B.【點睛】本題主要考查分段函數(shù)的概念,以及已知函數(shù)求值的方法,屬于基礎(chǔ)題.10、D【解析】
根據(jù)橢圓標(biāo)準(zhǔn)方程可得,解不等式組可得結(jié)果.【詳解】曲線表示橢圓,,解得,且,的取值范圍是或,故選D.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程以及不等式的解法,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).【詳解】空間直角坐標(biāo)系中,關(guān)于原點對稱,每個坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).點關(guān)于原點的對稱點的坐標(biāo)為故答案為:【點睛】本題考查了空間直角坐標(biāo)系關(guān)于原點對稱,屬于簡單題.12、-7【解析】
結(jié)合一元二次不等式和一元二次方程的性質(zhì),列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質(zhì),其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】
根據(jù)最大公約數(shù)的公式可求得兩個數(shù)的最大公約數(shù),再由除取余法即可將進制進行轉(zhuǎn)換.【詳解】374與238的最大公約數(shù)求法如下:,,,,所以兩個數(shù)的最大公約數(shù)為34.由除取余法可得:所以將34化為5進制后為,故答案為:.【點睛】本題考查了最大公約數(shù)的求法,除取余法進行進制轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
根據(jù)等差中項性質(zhì)求解即可【詳解】設(shè)等差中項為,則,解得故答案為:【點睛】本題考查等差中項的求解,屬于基礎(chǔ)題15、2【解析】
根據(jù)等比數(shù)列的性質(zhì)與基本量法求解即可.【詳解】由題,因為,又等比數(shù)列的各項都是正數(shù),故.故.故答案為:【點睛】本題主要考查了等比數(shù)列的等積性與各項之間的關(guān)系.屬于基礎(chǔ)題.16、【解析】
(2,2)為直線和直線的交點,即點(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進而得a+b的值?!驹斀狻恳驗橹本€與直線的交點為,所以,,即,,故.【點睛】本題考查求直線方程中的參數(shù),屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)在中,由正弦定理得,,再結(jié)合在直角中,,然后求解即可;(2)由正弦定理及兩角和的余弦可得,然后結(jié)合三角函數(shù)的有界性求解即可.【詳解】解:(1)設(shè),在中,由正弦定理得,,而在直角中,,所以,因為,所以,又因為,所以,所以,所以;(2)設(shè),在中,由正弦定理得,,而在直角中,,所以,因為,所以,即,即,根據(jù)三角函數(shù)有界性得,及,解得,所以角D的最大值為.【點睛】本題考查了正弦定理,重點考查了三角函數(shù)的有界性,屬中檔題.18、(1),;(2)見解析【解析】
(1)根據(jù)題意經(jīng)過次技術(shù)更新后,通過整理得到,構(gòu)造是等比數(shù)列,求出,得證;(2)由(1)可求出通項,令,通過相關(guān)計算即可求出n的最小值,從而得到答案.【詳解】(1)由題意,可設(shè)5商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品的占比分別為.易知經(jīng)過次技術(shù)更新后,則,①由①式,可設(shè),對比①式可知.又.從而當(dāng)時,是以為首項,為公比的等比數(shù)列.(2)由(1)可知,所以經(jīng)過次技術(shù)更形后,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比.由題意,令,得.故,即至少經(jīng)過6次技術(shù)更新,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能達到75%以上.【點睛】本題主要考查數(shù)列的實際應(yīng)用,等比數(shù)列的證明,數(shù)列與不等式的相關(guān)計算,綜合性強,意在考查學(xué)生的閱讀理解能力,轉(zhuǎn)化能力,分析能力,計算能力,難度較大.19、見解析【解析】(1)因為,,故,(2)要證明原命題,只需證明對任意都成立,即只需證明若,顯然有成立;若,則顯然成立綜上,恒成立,即對任意的,(3)由(2)知,若為等差數(shù)列,則公差,故n無限增大時,總有此時,即故,即,當(dāng)時,等式成立,且時,,此時為等差數(shù)列,滿足題意;若,則,此時,也滿足題意;綜上,滿足題意的的取值范圍是.【考點定位】考查數(shù)列與函數(shù)的綜合應(yīng)用,屬難題.20、(1)(2)【解析】
(1)由余弦定理和誘導(dǎo)公式整理,得到,求出;(2)在中,用余弦定理表示出,判斷是等腰直角三角形,再利用三角形面積公式表示出,再利用輔助角公式化簡,求出四邊形面積的最大值.【詳解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即為.(2)在中,,,由余弦定理可得,又∵,∴為等腰直角三角形,∴,∴當(dāng)時,四邊形面積有最大值,最大值為.【點睛】本題主要考查余弦定理解三角形、誘導(dǎo)公式、三角形面積公式和利用三角函數(shù)求最值,考查學(xué)生的分析轉(zhuǎn)化能力和計算能力,屬于中檔題.21、(1)和;(2)【解析】
(1)注意先后順
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版的云計算服務(wù)合同
- 不可撤銷信用證范文(2024版)
- 2025年度草種市場調(diào)研與銷售合同3篇
- 《任教學(xué)科語》課件
- 2024高新技術(shù)產(chǎn)品進出口貿(mào)易合同
- 2024招投標(biāo)與合同管理實務(wù):國有企業(yè)合規(guī)管理細(xì)則3篇
- 2025年度草場租賃與草原畜牧業(yè)發(fā)展協(xié)議3篇
- 2024年網(wǎng)絡(luò)直播平臺技術(shù)服務(wù)與授權(quán)合同
- 2024房地產(chǎn)公司合同類別
- 2025年度航空航天發(fā)動機采購合同范本與性能測試要求3篇
- 篆刻學(xué)ppt精品課件
- 建筑施工現(xiàn)場農(nóng)民工維權(quán)告示牌
- 《槍炮、病菌與鋼鐵》-基于地理視角的歷史解釋(沐風(fēng)學(xué)堂)
- 酒店爆炸及爆炸物品緊急處理應(yīng)急預(yù)案
- 2022年版物理課程標(biāo)準(zhǔn)的特點探討與實施建議
- 《中外資產(chǎn)評估準(zhǔn)則》課件第4章 國際評估準(zhǔn)則
- 幼兒園班級安全教育活動計劃表
- 《銀行柜臺風(fēng)險防控案例匯編》銀行柜臺風(fēng)險案例
- 展館精裝修工程施工方案(98頁)
- 香港聯(lián)合交易所有限公司證券上市規(guī)則
- (高清正版)JJF 1908-2021 雙金屬溫度計校準(zhǔn)規(guī)范
評論
0/150
提交評論