版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024成都中考數(shù)學第一輪專題復習之第七章微專題圖形的旋轉(zhuǎn)知識精練1.如圖,在Rt△ABC中,∠ACB=90°,點D在△ABC內(nèi)部,且AD=4,CD=eq\r(2),將△ACD繞點A逆時針旋轉(zhuǎn)90°得到△AEF,若B,D,E,F(xiàn)四點恰好在同一直線上,則BC的長為()A.eq\f(\r(13),2)B.eq\f(\r(26),2)C.eq\r(13)D.eq\r(26)第1題圖2.(2023寧夏)如圖,在△ABC中,∠BAC=90°,AB=AC,BC=2.點D在BC上,且BD∶CD=1∶3.連接AD,線段AD繞點A順時針旋轉(zhuǎn)90°得到線段AE,連接BE,DE.則△BDE的面積是()第2題圖A.eq\f(1,4)B.eq\f(3,8)C.eq\f(3,4)D.eq\f(3,2)3.如圖,在△ABC中,已知∠ACB=90°,∠BAC=30°,若BC=2,將△ABC繞點C旋轉(zhuǎn)得到△EDC,連接AE,當∠ACE=90°時,則△ABE的面積為________.第3題圖4.(2023龍東地區(qū))如圖,在Rt△ACB中,∠BAC=30°,CB=2,點E是斜邊AB的中點,把Rt△ABC繞點A順時針旋轉(zhuǎn),得Rt△AFD,點C,點B旋轉(zhuǎn)后的對應(yīng)點分別是點D,點F,連接CF,EF,CE,在旋轉(zhuǎn)的過程中,△CEF面積的最大值是________.第4題圖5.(2023葫蘆島)△ABC是等邊三角形,點E是射線BC上的一點(不與點B,C重合),連接AE,在AE的左側(cè)作等邊三角形AED,將線段EC繞點E逆時針旋轉(zhuǎn)120°,得到線段EF,連接BF,交DE于點M.(1)如圖①,當點E為BC的中點時,請直接寫出線段DM與EM的數(shù)量關(guān)系;(2)如圖②,當點E在線段BC的延長線上時,請判斷(1)中的結(jié)論是否成立?若成立,請寫出證明過程;若不成立,請說明理由;(3)當BC=6,CE=2時,請直接寫出AM的長.圖①圖②第5題圖參考答案與解析1.B【解析】如解圖,過點A作AG⊥DF于點G,由旋轉(zhuǎn)的性質(zhì),得∠DAF=∠CAE=90°,AF=AD=4,EF=CD=eq\r(2),∴△ADF是等腰直角三角形,∴∠ADF=∠AFG=45°,∴AG=GF=eq\f(\r(2),2)AF=2eq\r(2),∠ADC=∠AFE=135°,∴EG=GF+EF=3eq\r(2),∠CDF=∠ADC-∠ADF=90°,∴AE=eq\r(AG2+EG2)=eq\r(26),∠BDC=90°.∵∠ACB=∠CAE=90°,∴AE∥BC,∴∠DBC=∠E,∴BC=eq\f(CD,sin∠DBC)=eq\f(CD,sinE)=eq\f(CD,\f(AG,AE))=eq\f(\r(26),2).第1題解圖2.B【解析】∵線段AD繞點A順時針旋轉(zhuǎn)90°得到線段AE,∴AD=AE,∠DAE=90°,∴∠EAB+∠BAD=90°.在△ABC中,∠BAC=90°,AB=AC,∴∠BAD+∠CAD=90°,∠C=∠ABC=45°,∴∠EAB=∠CAD,∴△EAB≌△DAC(SAS),∴∠C=∠ABE=45°,CD=BE,∴∠EBC=∠EBA+∠ABC=90°.∵BC=2,BD∶CD=1∶3,∴BD=eq\f(1,2),CD=BE=eq\f(3,2),∴S△BDE=eq\f(1,2)BD·BE=eq\f(1,2)×eq\f(1,2)×eq\f(3,2)=eq\f(3,8).3.6+2eq\r(3)或6-2eq\r(3)【解析】∵∠ACE=90°,∴將△ABC繞點C旋轉(zhuǎn)90°后得到△EDC,分兩種情況討論:①如解圖①,當繞點C順時針旋轉(zhuǎn)90°時,在Rt△ABC中,BC=2,∠BAC=30°,∴AC=eq\r(3)BC=2eq\r(3),∴CE=AC=2eq\r(3),∴BE=BC+CE=2+2eq\r(3),∴S△ABE=eq\f(1,2)BE·AC=6+2eq\r(3);②如解圖②,當繞點C逆時針旋轉(zhuǎn)90°時,同理可得BE=CE-BC=2eq\r(3)-2,∴S△ABE=eq\f(1,2)BE·AC=6-2eq\r(3).綜上所述,△ABE的面積為6+2eq\r(3)或6-2eq\r(3).圖①圖②第3題解圖4.4+eq\r(3)【解析】∵線段CE為定值,∴點F到CE的距離最大時,△CEF的面積有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中點,∴AB=2BC=4,CE=AE=eq\f(1,2)AB=2,AC=AB·cos30°=2eq\r(3),∴∠ECA=∠BAC=30°.如解圖,過點A作AG⊥CE交CE的延長線于點G,∴AG=eq\f(1,2)AC=eq\r(3).∵點F在以A為圓心,AB長為半徑的圓上,∴AF=AB=4,∴點F到CE的距離最大值為4+eq\r(3),∴S△CEF=eq\f(1,2)CE·(4+eq\r(3))=4+eq\r(3).第4題解圖5.解:(1)∵△ABC是等邊三角形,點E是BC的中點,∴∠BAC=60°,∠BAE=eq\f(1,2)∠BAC,∴∠BAE=30°.∵△ADE是等邊三角形,∴∠DAE=60°,∴∠BAD=∠DAE-∠BAE=60°-30°=30,∴∠DAB=∠BAE,∴DM=EM;(2)DM=EM仍然成立.理由如下:如解圖①,連接BD,∵△ABC和△ADE是等邊三角形,∴∠ABC=∠BAC=∠DAE=∠ACB=60°,AB=AC,AD=AE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=180°-∠ACB=120°,BD=CE,∴∠DBE=∠ABD-∠ABC=120°-60°=60°,∴∠DBE+∠BEF=60°+120°=180°,∴BD∥EF.∵CE=EF,∴BD=EF,∴四邊形BDFE是平行四邊形,∴DM=EM;(3)如解圖②,當點E在BC的延長線上時,作AG⊥BC于G,∵∠ACB=60°,∴CG=AC·cos60°=eq\f(1,2)AC=3,AG=AC·sin60°=eq\f(\r(3),2)AC=3eq\r(3),∴EG=CG+CE=3+2=5,∴AE=eq\r(AG2+EG2)=eq\r((3\r(3))2+52)=2eq\r(13).由(2)知DM=EM,∴AM⊥DE,∴∠AME=90°.∵∠AED=60°,∴AM=AE·sin60°=2eq\r(13)×eq\f(\r(3),2)=eq\r(39).如解圖③,當點E在BC上時,作AG⊥BC于G,由AG=3eq\r(3),CG=3,知EG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國電視劇行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 2025-2030年中國消費性服務(wù)行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 2025-2030年中國動力電池行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 自動坦克模型課程設(shè)計指導書7
- 自動安平水準儀設(shè)計
- 袋鼠爪養(yǎng)護知識培訓課件
- 2024年口語交際教案
- 期刊雜志市場深度調(diào)查及發(fā)展前景研究預測報告
- 2018-2024年中國多肉植物市場深度調(diào)研分析及投資前景研究預測報告
- 春季新銷售風暴
- 2025年湖南出版中南傳媒招聘筆試參考題庫含答案解析
- 2025年度商用廚房油煙機安裝與維護服務(wù)合同范本3篇
- 2024年03月恒豐銀行2024年春季招考畢業(yè)生筆試歷年參考題庫附帶答案詳解
- 12G614-1砌體填充墻結(jié)構(gòu)構(gòu)造
- 初中物理教學反思周記 初中物理教學反思隨筆(7篇)
- 榕江縣銻礦 礦業(yè)權(quán)出讓收益計算結(jié)果的報告
- 機電常用材料進場驗收要點
- 電鍍產(chǎn)品檢驗作業(yè)指導書
- 湖北省武漢市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 路面輪胎模型建立方法swift
- 10KV供配電工程施工組織設(shè)計
評論
0/150
提交評論