版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
B號CBB號CBINSIGHTSWeminedCBInsightsdataandspokewith50+buyersofAIdevelopmentplatforms—includingDatabricks,HuggingFace,andScaleAI—tounderstandhowthey’redeployingAImodels,whatthey’repaying,andwhatthefutureholdsforthelandscape.NocompanywantstomissoutonAI.AscommercialapplicationsofAIscalerapidlyamidthegenerativeAIboom,enterprisesareracingtooverhaultheirinfrastructuretosupportthedeploymentandmanagementoftheseadvancedmodels.EnterprisebuyersareincreasinglyturningtoAIdevelopmentplatformsfortheirAIneeds.AIdevelopmentplatformsenableenterprisestomanagetheAIlifecycle—fromdatapreparation,training,andvalidationtomodeldeploymentandcontinuousmonitoring—throughasingleplatform.Thelandscapefeaturesamixofenterprisemachinelearning(ML)players(H2O.ai,DataRobot),bigtechproducts(GoogleCloudVertexAI,AmazonSageMakerandBedrock),aswellasemergingAIdevelopertools(Predibase,LightningAI).Source:CBInsights—AIdevelopmentplatformsmarketPlatformsarenowunderintensepressuretoadapttheirofferingsforthegenAIeraandcapturemoreenterpriseAIspend,enablingenterprisestoleveragethepoweroffoundationmodels.WeminedCBInsightsvaluation,headcount,and?nancingdata,aswellas50+buyerinterviews,tomaptheevolvinglandscapeandanalyzeitsfuture.1.TheAIdevelopmentplatformmarketlandscape2.HowenterprisebuyersareevaluatingtheROIoftheirAItoolspend3.ThefutureofenterpriseAIdevelopment4.Samplebuyercasestudiesbyindustry層號CBINSIGHTSTheEnterpriseAIRoadmap|2GenAIischangingtheAIdevelopmentlandscape4TheAIdevelopmentplatformmarket4LegacyMLcompanieslosesteam5CompaniesharnessgenAImomentum6Bigtechmusclesinalongsidenewstartups9Evaluatingreturnoninvestment(ROI)9Productivitygains9Costsavings10ThefutureofenterpriseAIdevelopment13Harnessingproprietarydatawillunlockdifferentiatedusecases15Bigtechcompanieshavemultipleadvantages17Enterprisesfacepressuretoexploreopen-sourcemodels18Task-speci?cmodelsgainadoption22ConsolidationiscomingasthegenerativeAIspacematures27SelectgenAIacquisitions,June2023–June202428EnterprisesbecomemoredisciplinedintheirAIspend29Customercasestudies30AIdevelopmentplatformusecasesummaries31層號CBINSIGHTSTheEnterpriseAIRoadmap|3AIdevelopmentplatformsarenotnew.Thelandscapefeaturesseveralplatformsfoundedintheearly2010s,whenenterpriseapplicationsformachinelearningstartedtobecomepopular.ButgenAIhasmarkedanewerainAIdevelopment.Increasinglysophisticatedmodelsareopeningupnewapplicationsthatenterprisesareeagertoharness,creatingopportunitiesforvendorsinthemarketwhilechallengingthemtoadaptfastenoughtosupportthelatestAItasks.Below,wede?nethemarketandtheplayersmovingin.AIdevelopmentplatformsofferone-stopshopsforenterprisesthatwanttodevelopandlaunchin-houseAIprojects.Somecompaniesinthespacecompetedirectly(e.g.,DataikuandDataRobotindatasciencework?ows),whileothersaremorespecialized(e.g.,Scale,whichfocusesondatapreparationbutalsooffersagenAIdevelopmentplatform).ManyenterprisesarecustomersofmultipleAIdevelopmentplatforms.Thebroadermachinelearningoperations(MLOps)landscapeisfragmented,containing130+companiesacross12categories.層號CBINSIGHTSTheEnterpriseAIRoadmap|4Source:CBInsightsresearch—MLOpsmarketmapEnterpriseMLdevelopmentplatforms,suchasDataRobot(foundedin2012)andDataiku(foundedin2013),arealreadyfeelingthepaininanovercrowdedmarket.DataikuraisedadownroundinDecember2022,whileDataRobothasgonethroughmultipleroundsoflayoffs.層號CBINSIGHTSTheEnterpriseAIRoadmap|5Source:CBInsights—DataikuvaluationdataGenerativeAIisnowshakingupthemarket,asthetech“l(fā)eapfrogs”moretraditionalenterpriseAIdevelopment,asthisScalecustomerdescribes:層號CBINSIGHTSTheEnterpriseAIRoadmap|6scale“Therehasbeenaleapfroginthekindofprojectsthatpeopleareworkingoninternallyatenterprises.Alotof[traditionalAIdevelopment]hasbeenabsorbedbyOpenAI,Anthropic,AI21Labs,andothers.Theneedtodothisin-househaschangedinthelast12monthsorsoandshapedthewholecategoryinaninterestingwayrightnow,where[enterprises]arealltryingto?gureoutwheretheygettheirnextphaseofgrowth.Becausethat'snotcomingfromthetraditionalMLandAIdatapipelinesthattheywereexpectingtogrowexponentially.”ChiefProductO?cer,VC-backedsoftwarestartup層CBINSIGHTSCompanieslikeScale,HuggingFace,andDatabrickshavesprintedaheadintermsofheadcountgrowthandfundingasthey’vecapturedsomeofthemomentumaroundgenerativeAI.層號CBINSIGHTSTheEnterpriseAIRoadmap|7Source:CBInsights—HeadcountdataMeanwhile,Databricksisalsoactivelyacquiringtoexpanditsproductfeatures—includingbuyingLLMOpsstartupMosaicMLfor$1.3BinJune2023anddatamanagementstartupTabularfor$1B+ayearlater.Source:CBInsights—Databricksacquisitioninsights層號CBINSIGHTSTheEnterpriseAIRoadmap|8BigtechcompaniesarealsobuildingouttheirproductsuitesforthegenAIera.GooglehasexpandeditsVertexAIdevelopmentplatformtogiveaccesstoitsGeminimodelsandotherthird-party/openmodels,whileAmazonWebServices(AWS)announcedtheAmazonBedrockmanagedserviceforgenAIdevelopmentinApril2023.Inaddition,anewerclassofLLM-focuseddevelopmentplatformshasemerged,includingsmall&task-speci?cplatformsPredibaseandGlaiveaswellasuni?edplatformslikeAdaptiveMLandChalk.Weinterviewed50+enterprisecustomersofAIdevelopmentplatforms,withusecasesrangingfrompredictivemaintenancetocoderproductivity,tounderstandhowthey’reevaluatingROI.Twokeyfactorsemerge:productivitygainsandcostsavings.Buyerslookatconcretemetricstomeasureproductivitygains,suchasincreasesinoutput(e.g.,featureslaunched),taskspeed,andoverallteame?ciency.ThisHuggingFacecustomerhighlightshowtheyquantifythevaluebyconsideringhowlongitwouldhavetakentoachievethesameresultswithouttheAItool.This"buildvs.buy"calculationshowsthetooldeliversproductivitybooststhatjustifytheir$500Kannualspend.層號CBINSIGHTSTheEnterpriseAIRoadmap|9comparabletosomanyotherinvestmentswe'vemadeovertheexecutionofthedifferentteams,soyes,absolutely[wehavespeci?cmetricstoquantifysuccess].IfweweretodoallofthisworkthatHuggingFaceisallowingustodo,howlongwouldithavetakenus?”Fortune500company層CBINSIGHTSCloselyrelatedtoproductivitygainsarethedirectcostsavingsenabledbyAItools.OneC3AIcustomerintheoil&gasindustryemphasizedthe"tremendousvalue"obtainedthroughusingtheplatform'spredictiveanalyticstoimproveequipmenterrorpredictionandreducemaintenancecycles.Fewerequipmentfailuresandproductioninterruptionstranslateintoharddollarsavings.層號CBINSIGHTSTheEnterpriseAIRoadmap|10ReadthefulltranscriptontheCBInsightsplatform.目c3.iCustomer:PrincipalofDataandAnalyticsatFortune500companySatisfaction:9/10“WehavegottentremendousvaluefromthesavingswehavemaintainedusingpredictiveanalyticsofC3AI.Ourmaintenancecyclehasgonedown.Wedon'ttakedownourplantthatoften,ourerrorsandstuffinpredictingwhenanequipmentmightbeoffhasbecomebetter.I'veheardreallygoodfeedbackfromtheoperatorswhomyteaminteractswith.”●Predictivemaintenanceforequipmentintheoilandgasindustry,consideringfactorslikegeographiclocationandmaintenanceintervals○Decreasedmaintenancecycleanddowntime,leadingtocostsavings○Integratedandanalyzeddifferenttypesofdata(e.g.,weatherdata)forimprovedaccuracyinpredictingwhenequipmentmightfail○Reducedpersonnelrequirementsformaintenance●UsestheentiresuiteofC3AI,withinstancesinEurope,NorthAmerica,andAsia層號CBINSIGHTSTheEnterpriseAIRoadmap|11●Multi-yearcontract●Concernsaboutrisinginfrastructurecostsassociatedwithclouddeploymentanddatastorage●PlanstoexpandtheuseofC3AIforpredictivemaintenanceinotherareas,suchassmartmetering,renewables,andhydrogenplantsThisH2O.aicustomerbreaksdowntheROIcalculationfurther.Tothem,the$125KfortheH2OAICloud(HAIC)productisjusti?edbyestimating4weeksoftimesavedannuallyperdatascientist.Withateamof10datascientists,thisequatestoaround$500Kinsavings—a4xreturnontheinvestment.Thecustomernotesthesesavingsmaxouttheirbudgetforsuchtools,showingtheyarespendingatthelimitofwheretheyseeapositiveROI.層號CBINSIGHTSTheEnterpriseAIRoadmap|12H2o.aivalueisthere.Asfarasmybudgetsgo,Idon'thavemuchmoreofabudgetthanthe$125,000andthe$50,000that'sbeenallottedtome.I'mmaxedoutthereforanMLOpstoolandanAIacceleratortool.”Publiclytradedutilitycompany層CBINSIGHTSTraditionalAIandMLworkloadsunderpinawiderangeofenterpriseapplicationstoday,frompredictivemaintenanceinmanufacturingtodemandforecastinginretailtofrauddetectionin?nancialservices.Meanwhile,generativeAIisstillintheearlydaysofenterpriseadoption.ThemostcommongenAIusecases,cuttingacrossenterprises,asDellCOOJeffClarkesummarizedonthecompany’sMayearningscall,are:1.Contentcreation2.Customersupportassistance3.Naturallanguagesearch層號CBINSIGHTSTheEnterpriseAIRoadmap|134.Designanddatacreation5.Codegeneration6.DocumentautomationForsomecustomers,likethisC3AIbuyer,genAIremainsintherealmofhype.“Yes,IgetaskedamilliontimesaboutChatGPTandtheirpotentialintegration,butthat'snotsomethingthatIthinkwithinthepetrochemicalspacethatpeoplearegoingtojumponrightPubliclytradedchemicalcompany層CBINSIGHTSButmostinterviewsrevealacommontheme:therapidlyevolvinggenAImarketwillsigni?cantlyshapethefutureofAIdevelopmentplatforms.AsbusinessesplantodeveloptheirownAIapplications,theyarecloselymonitoringtheirvendors'genAIroadmapstoinformtheirdecision-making.Hereare6keytakeawaysaboutthefutureofthelandscape,basedonCBInsightsdataandbuyerinterviews.層號CBINSIGHTSTheEnterpriseAIRoadmap|14AImodelslikeOpenAI’sGPT-4dependonmassivequantitiesoftrainingdata.Enterprises’proprietarydata,structuredandunstructured,iskeytocustomizingmodelsfortheirownusecases,likesummarizationanddataanalysis.Simplywranglingenterprisedataasastartingpointtobeabletoleverageitfortheseusecasesisstillastickingpoint,perDellCOOJeffClarke:“Helpingcustomersunderstandtheirdata,howtopreparetheirdataforthoseusecasesiswhatwe'redoingtoday.”Meanwhile,enterprisesarebeingpushedtoinvestincleaninguptheirdataquality,tominimizethedownstreameffectsofpoor-qualitydataonAIperformance.OnecustomerofinfrastructureproviderandmodeldeveloperTogetherAIemphasizedtheimportanceofdatamanagement.together.aidatamanagementaspectofit.Thedataside,thequalityofthedata,thelocationofthedata,thestateofthedata,thecurationTechnologyconsultingandservicescompany層CBINSIGHTS層號CBINSIGHTSTheEnterpriseAIRoadmap|15LeadingclouddatamanagementcompanieslikeDatabricksandSnow?ake,whichhelpcompaniesconnecttheirsourcesofdataforprocessingandanalysis,aremovingtocapturemoreenterpriseAIclients.Bothrecentlymademovestosupportadditionaldataformats,liketheopen-sourceApacheIcebergtableformat,whichisimportantforenterpriseslookingtoleveragetheirowndataforAIapplications.NotablyinJune2024,DatabricksacquiredTabular,whichisbuiltonApacheIceberg,fornorthof$1B—bringingtogethertheleadingopen-sourcelakehouseformatsDeltaLake,whichDatabricksisbuilton,andIceberg.ThiswillenableDatabrickstoprovidebetterdatacompatibilityforitscustomers,allowingthemtoutilizetheirdataacrossdifferentformatsandreducedatasilos.Source:CBInsights—Databricksacquisitiondata層號CBINSIGHTSTheEnterpriseAIRoadmap|16BigtechcompanieshavemultipleadvantagesBigtechplayerslikeAmazon,Microsoft,Google,andIBMhaveinherentadvantagesintheAIdevelopmentlandscapeduetotheirscale,infrastructure,andexistingcustomerrelationships.Forexample,oneIBMcustomercitedIBM’saccesstoitsinternaldataandapprovaltoworkbehindits?rewalls,enablingfasterproofofconceptsandpilots,asbeingakeyreasonitwentwithIBMwatsonx:“You'reprobablylookingateasilymaybespending20%to30%morebybringinginaseparatevendor.”Similarly,Microsoft'sstrongdistributionchannelsanditsabilitytoreachknowledgeworkersthroughproductslikeCopilotgiveitacompetitiveedgewithenterprises.Onthedatamanagementside,platformslikeDatabricksallowuserstokeeptheirdataonbigtech’scloudplatformswhiletrainingmachinelearningmodels.scale“Allthoseplatforms,eachofthemhavetheirownniche.Databricks,ofcourse,runningtheopen-sourceMLonApacheend-to-endincludingyourdata.IfyourdataisonAWS,Azure,GCPGCP,orwherever,youcankeepthedatawhereitis,youcantrainyourmachinelearningmodelsonDatabricks.That'sahugeadvantage,especiallywithpeoplewhohavealotofdataonthehyperscalersalready.”ChiefProductO?cer,VC-backedsoftwarestartup層CBINSIGHTS層號CBINSIGHTSTheEnterpriseAIRoadmap|17AIstartupswillneedtoinnovatefasterandprovidedifferentiatedofferings.Forexample,thisVPsuggestsfasterinnovationwillbecrucialforcompanieslikeHuggingFacetostandoutasMicrosoft’sAzureexpandsitsmodelcatalog:“MostofourplatformisbuiltonAzure.Nowthatthemodelspeci?callygotothemforsomeofthisanddotheymovefasterthantheothers?”Publiclytradedmultinationalhealthinsurancecompany層CBINSIGHTSInotherwords,asbigtechcatchesupintermsofmodelrepositoriesandsupportedAItasks,wepredicttherestoftheecosystemwillneedtospecializeandformstrategicpartnershipstocompeteforenterprises'coreAIwork?ows.VendorswillfaceevenmorepressuretoproveROIinthislandscape.Ascompanieslookformorecost-effectiveand?exiblealternativestoproprietarymodelslikethosefromOpenAI,open-sourceAImodelsaregainingattention.層號CBINSIGHTSTheEnterpriseAIRoadmap|18Theperformancegapbetweenopen-sourceandproprietarymodelsisclosingfast,aswehighlightedearlierthisyear.Source:CBInsights—GenerativeAIPredictions2024reportMetahassincereleaseditsopen-sourceLlama370Bparametermodel,whichscoreshigherontheMMLU—atestthatevaluatesalanguagemodel’sknowledge—thanAnthropic’sproprietaryClaude3Sonnet(thesecond-mostadvancedmodelintheClaude3family).Companieswillcomeunder?nancialpressuretoconsiderhowtoleverageopen-sourcemodelsastheythinkmoreaboutthelonger-termROIoftheirAIinvestments.層號CBINSIGHTSTheEnterpriseAIRoadmap|19modelsoutthere?Whatisthetrade-offintermsofperformanceandcostandthingslikethat?’ThatchangeiscomingaswestartthinkingaboutROIforthese.”Publiclytradedmultinationalhealthinsurancecompany層CBINSIGHTSAtthesametime,open-sourcemodelshavetrade-offs,asthebelowTogetherAIcustomerhighlights—includingthecostsassociatedwithmanaginginfrastructure,ensuringdatasecurity,potentiallylowerperformancecomparedtoproprietarymodels,andtheneedfortechnicalexpertisetotrainanddeploythemeffectively.層號CBINSIGHTSTheEnterpriseAIRoadmap|20together.aigoingtohavespeci?cusecasesacrossspeci[Companiesare]nowgoingtointroducetheseopen-sourcemodels1)fromalmostapilotstandpoint2)toseewhatexactlyTechnologyconsultingandservicescompany層CBINSIGHTSMorebroadly,customersindicatethattheycareaboutmodelavailabilityandspeedtomarketaskeyneedswhenevaluatingAIdevelopmentplatforms.層號CBINSIGHTSTheEnterpriseAIRoadmap|21“Thespaceismovingsofast.Weneedthelatestandthegreateststuff.Weneedthereliability.Weneedthesecurity,privacy,allthosethingsontheenterpriseside.ButwiththeFortuneGlobal500subsidiary層CBINSIGHTSSmalllanguagemodels(SLMs)havefewerparametersandrequirelesscomputationalpowerthanLLMs,makingthemfastertotrainandcheapertoruncomparedtogenericmodels.Iftheyareonlybeingusedforaspeci?ctask,thentheirperformancemightbemorethanenoughforenterprises—insomecasestheycanevenoutperformLLMs.Microsoft’sPhi-3-smallmodel(7Bparameters),announcedinApril2024andtrainedon“high-quality”textbookdata,outperformsGPT-3.5Turbo(estimatedat20Bparameters)ontheMMLUbenchmark.Bytrainingonnarrowdatasets,smallmodelscanbehonedfortargetedapplications.Multiplebuyersindicatedtheopportunityfordomain-speci?cmodelsinourconversations.層號CBINSIGHTSTheEnterpriseAIRoadmap|22ReadthefulltranscriptontheCBInsightsplatform.VertexAICustomer:DirectorofSoftwareEngineeringatpubliclytradedtelecommunicationscompanySatisfaction:7.5/10“WhatIthinkwewillneedfromGoogleistohelpuscreatecustareveryspeci?ctodomain,andtheyarevery,verycomprehensiveinthatdomain,ratherthanbeinggenericlikemasterofallwedon'tneed,weneedexpertofone.Weneedthesekindsofexpertmodelsforthesespeci?cdomains.”●Machinelearningforpredictivemodeling(e.g.,salesforecasting)andpropensityscoring(e.g.,optimizingpaidmediacampaignsbyidentifyinghigh-ROIpersonasandcohorts)●LeveragingAIforcontactcenteroptimizationandIT/softwaredevelopment●UsingVertexAIaspartofalarger$100M,5-yearenterprisecontractwithGoogle●Overallspendisaround$6Mperyear,whichincludesVertexAI,ContactCenterAI(CCAI),BI,cloudcapabilities,andcomputecosts層號CBINSIGHTSTheEnterpriseAIRoadmap|23●Pricingisusage-basedandtoken-based,notseat-based●Needformoredomain-speci?c,comprehensivemodelsratherthangenericlargelanguagemodels●AnticipaterequiringGoogle'shelptocreatecustommodelstailoredtotheirspeci?cdomainsAnotheradvantageofsmallmodelsisthepotentialforenhanceddataprivacyandsecurity.Byhostingandtrainingmodelslocally,companiescanmaintaingreatercontroloversensitivedataandreducetheriskofdatabreachesorunauthorizedaccessassociatedwithrelyingonthird-partyservices.NascentAIdevelopmentplatformsPredibaseandGlaive—bothAI1002024winners—helpenterprisestrainanddeploysmallandtask-speci?cmodels.WhilePredibaseisexpandingitscustomerbase,Glaiveisstillintheearlierstagesofdevelopment,ashighlightedbyCBInsightsCommercialMaturityscores.層號CBINSIGHTSTheEnterpriseAIRoadmap|24Source:CBinsights—MosaicandCommercialMaturityscores層號CBINSIGHTSTheEnterpriseAIRoadmap|25ReadthefulltranscriptontheCBInsightsplatform..predibaseCustomer:QuantitativeStrategistat?nancialservicescompanySatisfaction:9/10Usecases:●Understandclients’tradingpatternsandhabits,usingstructured(numericalpricingandriskdata)andunstructuredclientdatatoprovideclientswithreal-timepredictionsonthe?nancialservicescompany’splatform●Aimingtoget1to2modelsintoproductiontodemonstratevalueandcovercontractcost●Predibaseproductforbuildingadvancedmachinelearningmodelsusingthecustomer’sdatasetsoutofthebox;APIsuitetointegratemodelswithtechstack●Wantedtominimizeriskpre-production,addedearlyterminationdatestocontract●Addedconsultancypackagetocontract,foraccesstoPredibaseexpertsafewhoursperweek層號CBINSIGHTSTheEnterpriseAIRoadmap|26●Undecidedonrenewal,dependentongettingmodelsintoproductionbyendofcontractthatmakemeasurablepredictionsandconcretelyaddbusinessvalue●SeesopportunityforPredibasetogrowbyprovidingmoreconsultancyservicestoguidelessexperiencedMLcustomersAcrossinterviews,buyershaveexpressedanexpectationofconsolidationacrossthespace.thesamething.There'ssomanyoutthererightnowthatdothesamethingtodothe?ne-tuning,theydotheproductionanalyzation,theinferencing…”Technologyconsultingcompany層CBINSIGHTS層號CBINSIGHTSTheEnterpriseAIRoadmap|27WhileoverallAIM&AactivitydroppedinQ1’24,thegenAIspacehasseenanuptickinM&Adealsrecently.SelectgenAIacquisitions,June2023–June2024MLtrainingdatacurationHuggingFace6/13/2024$7MModelvalidation&monitoringSnow?ake5/22/2024$42.3MVisualeffects(VFX)Autodesk5/21/2024$12.5MHardware&modeloptimizationNvidia4/24/2024$118MHardware&modeloptimizationNvidia4/24/2024$55MLLMsecurityProtectAI1/31/2024EnterpriseavatarsAdobe11/22/2023$13.9MAIdevelopmentDatabricks6/26/2023$37MLegalcasesearch&summarizationThomsonReuters6/26/2023$69MCBInsightscustomerscanusethissearchtotrackgenAIM&Adeals.GenerativeAIstartupsattheinfrastructurelayerareraisingdealsonaverageover$150Mduetothecapital-intensivenatureofdevelopingadvancedmodels.GiventhecostoftrainingmodelsandbringingonAItalent,startupsrunningoutofrunwaymayincreasinglylooktoexitopportunities.Microsofteffectivelyacqui-hiredIn?ectionAI,asthecompanydidn’tseeaviablepathtocommercializingitsconsumerchatbot,whileStabilityAIhasreportedlydiscussedasaleasitfacesmountinglosses.層號CBINSIGHTSTheEnterpriseAIRoadmap|28Meanwhile,HuggingFaceacquiredAIdatacurationstartupArgilla,whichhadraised$7Minfunding,for$10MinJune2024.Beyondteam-levelproductivitygainsandcostsavings,oneopenquestionaboutthecurrentrushofAIinvestmentiswhatimpactitwillhaveoncompanies’toplines?Salesforce,whichhasbeenleaningheavilyonitsAIgrowthstrategy,indicatedinitsFebruaryearningscallthatitdoesn'texpecttoseeamaterialimpactfromitsnewestgenAIproductsthis?scalyear.TheCRMleaderreporteddisappointingresultsinitsmostrecentquarteramidanenterprisesoftwarespendingpullback,thoughitmaintaineditsfull-yearrevenueguidance.Source:CBInsights—AIstrategiesfor11oftheworld’slargestcompaniesEnterpriseswilllikelybecomemoredisciplinedintheirAIspendingasROItakestimetomaterialize.Mentionsrelatedto“AI”and“revenue”havegrownnearly5xonearningscallsfromQ1’22toQ1’24.Forexample,JPMorganCFOJeremyBarnumtalkedaboutthe?rm’s“disciplined”appro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考物理總復(fù)習(xí)專題九磁場第3講帶電粒子在勻強磁場、復(fù)合場中的運動練習(xí)含答案
- 生產(chǎn)車間承包設(shè)備租賃
- 高中化學(xué) 第三冊 第九章 初識元素周期律 9.2 元素周期表教學(xué)設(shè)計1 滬科版
- 2024年四年級品德與社會上冊 第三單元 生活在這里真好 第11課《我家來了新鄰居》教案 粵教版
- 2024秋七年級英語上冊 Unit 5 Family and Home Lesson 28 A Family Picnic教學(xué)設(shè)計 (新版)冀教版
- 2023一年級數(shù)學(xué)下冊 五 認識人民幣 1認識人民幣教案 西師大版
- 2023九年級道德與法治下冊 第一單元 我們共同的世界 第一課 同住地球村第2課時 復(fù)雜多變的關(guān)系說課稿 新人教版
- 文書模板-建設(shè)工程施工分包合同
- 外匯存款代辦委托書
- 銀行合同范本(2篇)
- 《江西二年級數(shù)學(xué)上學(xué)期期中試卷全解析》
- 江蘇省揚州市江都區(qū)2024-2025學(xué)年七年級上學(xué)期第一次月考數(shù)學(xué)試卷
- 2007債券市場年度分析報告
- 冬季傳染病預(yù)防-(課件)-小學(xué)主題班會課件
- 2024年安全員A證理論考試1000題及答案
- 2024年秋新北師大版數(shù)學(xué)一年級上冊課件 第四單元 一起做游戲
- 人教版2024新版八年級全一冊信息技術(shù)第9課 互聯(lián)協(xié)議仍沿用 教學(xué)設(shè)計
- 云南省昆明市五華區(qū)2022-2023學(xué)年九年級上學(xué)期期中檢測物理試題
- 人教版四年級上冊美術(shù)教案設(shè)計-表格
- 居間人土方合同協(xié)議書
- 銀行保安服務(wù)外包采購項目投標方案技術(shù)方案(技術(shù)方案)
評論
0/150
提交評論