版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列圖形中,可以看作是中心對稱圖形的為()A. B. C. D.2.已知一個單位向量,設(shè)、是非零向量,那么下列等式中正確的是().A.; B.; C.; D..3.矩形的周長為12cm,設(shè)其一邊長為xcm,面積為ycm2,則y與x的函數(shù)關(guān)系式及其自變量x的取值范圍均正確的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)4.如圖所示,在⊙O中,=,∠A=30°,則∠B=()A.150° B.75° C.60° D.15°5.在下列各式中,運算結(jié)果正確的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2?x3=x6 D.(x﹣1)2=x2﹣16.如圖,△ABC的頂點在網(wǎng)格的格點上,則tanA的值為()A. B. C. D.7.已知一個扇形的半徑為60cm,圓心角為180°,若用它做成一個圓錐的側(cè)面,則這個圓錐的底面半徑為()A.15cm B.20cm C.25cm D.30cm8.拋物線y=ax2+bx+c(a≠1)如圖所示,下列結(jié)論:①abc<1;②點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2;③b2>(a+c)2;④2a﹣b<1.正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個9.正六邊形的半徑為4,則該正六邊形的邊心距是()A.4 B.2 C.2 D.10.在同一時刻,兩根長度不等的竿子置于陽光之下,而它們的影長相等,那么這兩根竿子的相對位置是()A.兩根都垂直于地面 B.兩根平行斜插在地上 C.兩根不平行 D.兩根平行倒在地上11.已知線段a、b、c、d滿足ab=cd,把它改寫成比例式,正確的是()A.a(chǎn):d=c:b B.a(chǎn):b=c:d C.c:a=d:b D.b:c=a:d12.二次函數(shù)y=ax2+bx+c(a≠0)與一次函數(shù)y=ax+c在同一坐標系中的圖象大致為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應(yīng)點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.14.如果關(guān)于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有實數(shù)根,那么m的取值范圍是_____.15.如圖,若被擊打的小球飛行高度(單位:)與飛行時間(單位:)之間具有的關(guān)系為,則小球從飛出到落地所用的時間為_____.16.長為的梯子搭在墻上與地面成角,作業(yè)時調(diào)整為角(如圖所示),則梯子的頂端沿墻面升高了______.17.若二次函數(shù)的圖象經(jīng)過點(3,6),則18.如圖,菱形ABCD的對角線AC與BD相交于點O,AC=6,BD=8,那么菱形ABCD的面積是____.三、解答題(共78分)19.(8分)如圖,在平行四邊形中,為邊上一點,平分,連接,已知,.求的長;求平行四邊形的面積;求.20.(8分)已知平行四邊形ABCD,對角線AC、BD交于點O,線段EF過點O交AD于點E,交BC于點F.求證:OE=OF.21.(8分)已知:在平面直角坐標系中,的三個頂點的坐標分別為,,.(1)畫出關(guān)于原點成中心對稱的,并寫出點的坐標;(2)畫出將繞點按順時針旋轉(zhuǎn)所得的.22.(10分)某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用長的籬笆圍成一個矩形花園(籬笆只圍、兩邊).(1)若圍成的花園面積為,求花園的邊長;(2)在點處有一顆樹與墻,的距離分別為和,要能將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),又使得花園面積有最大值,求此時花園的邊長.23.(10分)如圖,⊙O是Rt△ABC的外接圓,直徑AB=4,直線EF經(jīng)過點C,AD⊥EF于點D,∠ACD=∠B.(1)求證:EF是⊙O的切線;(2)若AD=1,求BC的長;(3)在(2)的條件下,求圖中陰影部分的面積.24.(10分)如圖,在中,,,圓是的外接圓.(1)求圓的半徑;(2)若在同一平面內(nèi)的圓也經(jīng)過、兩點,且,請直接寫出圓的半徑的長.25.(12分)如圖,矩形紙片ABCD,將△AMP和△BPQ分別沿PM和PQ折疊(AP>AM),點A和點B都與點E重合;再將△CQD沿DQ折疊,點C落在線段EQ上點F處.(1)判斷△AMP,△BPQ,△CQD和△FDM中有哪幾對相似三角形?(不需說明理由)(2)如果AM=1,sin∠DMF=,求AB的長.26.如圖1,拋物線y=ax2+bx+c的頂點(0,5),且過點(﹣3,),先求拋物線的解析式,再解決下列問題:(應(yīng)用)問題1,如圖2,線段AB=d(定值),將其彎折成互相垂直的兩段AC、CB后,設(shè)A、B兩點的距離為x,由A、B、C三點組成圖形面積為S,且S與x的函數(shù)關(guān)系如圖所示(拋物線y=ax2+bx+c上MN之間的部分,M在x軸上):(1)填空:線段AB的長度d=;彎折后A、B兩點的距離x的取值范圍是;若S=3,則是否存在點C,將AB分成兩段(填“能”或“不能”);若面積S=1.5時,點C將線段AB分成兩段的長分別是;(2)填空:在如圖1中,以原點O為圓心,A、B兩點的距離x為半徑的⊙O;畫出點C分AB所得兩段AC與CB的函數(shù)圖象(線段);設(shè)圓心O到該函數(shù)圖象的距離為h,則h=,該函數(shù)圖象與⊙O的位置關(guān)系是.(提升)問題2,一個直角三角形斜邊長為c(定值),設(shè)其面積為S,周長為x,證明S是x的二次函數(shù),求該函數(shù)關(guān)系式,并求x的取值范圍和相應(yīng)S的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.【詳解】A、不是中心對稱圖形,故本選項錯誤;
B、是中心對稱圖形,故本選項正確;
C、不是中心對稱圖形,故本選項錯誤;
D、不是中心對稱圖形,故本選項錯誤;
故選:B.【點睛】此題考查中心對稱圖形的特點,解題關(guān)鍵在于判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.2、B【分析】長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規(guī)定大小沒規(guī)定方向,則可分析求解.【詳解】解:、左邊得出的是的方向不是單位向量,故錯誤;、符合向量的長度及方向,正確;、由于單位向量只限制長度,不確定方向,故錯誤;、左邊得出的是的方向,右邊得出的是的方向,兩者方向不一定相同,故錯誤.故選:.【點睛】本題考查了向量的性質(zhì).3、D【分析】已知一邊長為xcm,則另一邊長為(6-x)cm,根據(jù)矩形的面積公式即可解答.【詳解】解:已知一邊長為xcm,則另一邊長為(6-x)cm.
則y=x(6-x)化簡可得y=-x2+6x,(0<x<6),
故選:D.【點睛】此題主要考查了根據(jù)實際問題列二次函數(shù)關(guān)系式的知識,解題的關(guān)鍵是用x表示出矩形的另一邊,此題難度一般.4、B【詳解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形內(nèi)角和定理).故選B.考點:圓心角、弧、弦的關(guān)系.5、B【分析】根據(jù)合并同類項、完全平方公式及同底數(shù)冪的乘法法則進行各選項的判斷即可.【詳解】解:A、x2+x2=2x2,故本選項錯誤;B、x﹣2x=﹣x,故本選項正確;C、x2?x3=x5,故本選項錯誤;D、(x﹣1)2=x2﹣2x+1,故本選項錯誤.故選B.【點睛】本題主要考查了合并同類項、完全平方公式及同底數(shù)冪的乘法運算等,掌握運算法則是解題的關(guān)鍵.6、A【分析】根據(jù)勾股定理,可得BD、AD的長,根據(jù)正切為對邊比鄰邊,可得答案.【詳解】解:如圖作CD⊥AB于D,CD=,AD=2,tanA=,故選A.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.7、D【分析】根據(jù)底面周長=展開圖的弧長可得出結(jié)果.【詳解】解:設(shè)這個圓錐的底面半徑為r,
根據(jù)題意得2πr=,
解得r=30(cm),
即這個圓錐的底面半徑為30cm.
故選:D.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.8、B【分析】利用拋物線開口方向得到a>1,利用拋物線的對稱軸在y軸的左側(cè)得到b>1,利用拋物線與y軸的交點在x軸下方得到c<1,則可對①進行判斷;通過對稱軸的位置,比較點(-3,y1)和點(1,y2)到對稱軸的距離的大小可對②進行判斷;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1時,a+b+c>1;x=-1時,a-b+c<1,則可對③進行判斷;利用和不等式的性質(zhì)可對④進行判斷.【詳解】∵拋物線開口向上,∴a>1,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>1,∵拋物線與y軸的交點在x軸下方,∴c<1,∴abc<1,所以①正確;∵拋物線的對稱軸為直線x=﹣,而﹣1<﹣<1,∴點(﹣3,y1)到對稱軸的距離比點(1,y2)到對稱軸的距離大,∴y1>y2,所以②正確;∵x=1時,y>1,即a+b+c>1,x=﹣1時,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正確;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④錯誤.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(1,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>1時,拋物線與x軸有2個交點;△=b2-4ac=1時,拋物線與x軸有1個交點;△=b2-4ac<1時,拋物線與x軸沒有交點.9、C【分析】分析出正多邊形的內(nèi)切圓的半徑就是正六邊形的邊心距,即為每個邊長為4的正三角形的高,從而構(gòu)造直角三角形即可解.【詳解】解:半徑為4的正六邊形可以分成六個邊長為4的正三角形,
而正多邊形的邊心距即為每個邊長為4的正三角形的高,
∴正六多邊形的邊心距==2.故選C.【點睛】本題考查學生對正多邊形的概念掌握和計算的能力.解答這類題往往一些學生因?qū)φ噙呅蔚幕局R不明確,將多邊形的半徑與內(nèi)切圓的半徑相混淆而造成錯誤計算.10、C【分析】在不同時刻,同一物體的影子方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在變,依此進行分析.【詳解】在同一時刻,兩根竿子置于陽光下,但看到他們的影長相等,那么這兩根竿子的頂部到地面的垂直距離相等,而竿子長度不等,故兩根竿子不平行,故答案選擇C.【點睛】本題考查投影的相關(guān)知識,解決此題的關(guān)鍵是掌握平行投影的特點.11、A【分析】根據(jù)比例的基本性質(zhì):兩外項之積等于兩內(nèi)項之積.對選項一一分析,選出正確答案.【詳解】解:A、a:d=c:b?ab=cd,故正確;B、a:b=c:d?ad=bc,故錯誤;C、c:a=d:b?bc=ad,故錯誤D、b:c=a:d?ad=bc,故錯誤.故選A.【點睛】本題考查比例的基本性質(zhì),解題關(guān)鍵是根據(jù)比例的基本性質(zhì)實現(xiàn)比例式和等積式的互相轉(zhuǎn)換.12、D【分析】先根據(jù)一次函數(shù)的圖象判斷a、c的符號,再判斷二次函數(shù)圖象與實際是否相符,判斷正誤.【詳解】解:A、由一次函數(shù)y=ax+c的圖象可得:a>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,錯誤;
B、由一次函數(shù)y=ax+c的圖象可得:a>0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,交于y軸的正半軸,錯誤;
C、由一次函數(shù)y=ax+c的圖象可得:a<0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,錯誤.
D、由一次函數(shù)y=ax+c的圖象可得:a<0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,與一次函數(shù)的圖象交于同一點,正確;
故選:D.【點睛】本題考查二次函數(shù)的圖象,一次函數(shù)的圖象,解題的關(guān)鍵是熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì):開口方向、對稱軸、頂點坐標等.二、填空題(每題4分,共24分)13、【分析】首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長,又由中位線的性質(zhì)求得EM的長,則問題得解【詳解】如圖,設(shè)與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設(shè),則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.14、m≥﹣1且m≠1【分析】根據(jù)方程有實數(shù)根得出△=(﹣4)1﹣4×(m﹣1)×(﹣1)≥0,解之求出m的范圍,結(jié)合m﹣1≠0,即m≠1從而得出答案.【詳解】解:∵關(guān)于x的一元二次方程(m﹣1)x1﹣4x﹣1=0有實數(shù)根,∴△=(﹣4)1﹣4×(m﹣1)×(﹣1)≥0,解得:m≥﹣1,又∵m﹣1≠0,即m≠1,∴m≥﹣1且m≠1,故答案為:m≥﹣1且m≠1.【點睛】本題考查一元二次方程有意義的條件,熟悉一元二次方程有意義的條件是△≥0且二次項系數(shù)不為零是解題的關(guān)鍵.15、1.【分析】根據(jù)關(guān)系式,令h=0即可求得t的值為飛行的時間.【詳解】解:依題意,令得:∴得:解得:(舍去)或∴即小球從飛出到落地所用的時間為故答案為1.【點睛】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.此題為數(shù)學建模題,關(guān)鍵在于讀懂小球從飛出到落地即飛行的高度為0時的情形,借助二次函數(shù)解決實際問題.此題較為簡單.16、2-2【詳解】由題意知:平滑前梯高為4?sin45°=4?=.平滑后高為4?sin60°=4?=.∴升高了m.故答案為.17、.【詳解】試題分析:根據(jù)點在拋物線上點的坐標滿足方程的關(guān)系,由二次函數(shù)的圖象經(jīng)過點(3,6)得:.18、1【分析】根據(jù)菱形的面積公式即可求解.【詳解】∵菱形ABCD的對角線AC與BD相交于點O,AC=6,BD=8,∴菱形ABCD的面積為AC×BD=×6×8=1,故答案為:1.【點睛】此題主要考查菱形面積的求解,解題的關(guān)鍵是熟知其面積公式.三、解答題(共78分)19、(1)10;(2)128;(3)【分析】(1)先根據(jù)平行四邊形的性質(zhì)和角平分線的性質(zhì)求得,然后根據(jù)等角對等邊即可解答;(2)先求出CD=10,再根據(jù)勾股定理逆定理可得,即可說明CE是平行四邊形的高,最后求面積即可;(3)先求出BC的長,再根據(jù)勾股定理求出BE的長,最后利用余弦的定義解答即可.【詳解】解:四邊形是平行四邊形又平分四邊形是平行四邊形.在中,.四邊形是平行四邊形且中,【點睛】本題考查了平行四邊形、勾股定理以及銳角的三角函數(shù)等知識,其中掌握平行四邊形的性質(zhì)是解答本題的關(guān)鍵.20、證明見解析.【分析】由四邊形ABCD是平行四邊形,可得AD∥BC,OA=OC,繼而可利用ASA判定△AOE≌△COF,繼而證得OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【點睛】此題考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.21、(1)如圖所示,即為所求,見解析,點的坐標為;(2)如圖所示,即為所求.見解析.【解析】分別作出三頂點關(guān)于原點的對稱點,再順次連接即可得;
分別作出點、繞點按順時針旋轉(zhuǎn)所得的對應(yīng)點,再順次連接即可得.【詳解】解:(1)如圖所示,即為所求,其中點的坐標為.(2)如圖所示,即為所求.【點睛】此題主要考查了圖形的旋轉(zhuǎn)變換,正確得出對應(yīng)點位置是解題關(guān)鍵.22、(1)花園的邊長為:和;(2)當或時,有最大值為,此時花園的邊長為或.【分析】(1)根據(jù)等量關(guān)系:矩形的面積為91,列出方程即可求解;(2)由在P處有一棵樹與墻CD,AD的距離分別是和,列出不等式組求出的取值范圍,根據(jù)二次函數(shù)的性質(zhì)求解即可.【詳解】(1)設(shè)長為.由題意得:解得:答:花園的邊長為:和.(2)設(shè)花園的一邊長為,面積為.由題意:或解得:,或.當或時,有最大值為,此時花園的邊長為或.【點睛】本題考查了方程的應(yīng)用,二次函數(shù)的應(yīng)用以及不等式組的應(yīng)用,認真審題準確找出等量關(guān)系是解題的關(guān)鍵.23、(1)見解析;(2);(3)【分析】(1)連接OC,由OB=OC,利用等邊對等角得到∠BCO=∠B,由∠ACD=∠B,得到∠ACD+∠OCA=90°,即可得到EF為圓O的切線;(2)證明Rt△ABC∽Rt△ACD,可求出AC=2,由勾股定理求出BC的長即可;(3)求出∠B=30°,可得∠AOC=60°,在Rt△ACD中,求出CD,然后用梯形ADCO和扇形OAC的面積相減即可得出答案.【詳解】(1)證明:連接OC,∵AB是⊙O直徑,∴∠ACB=90°,即∠BCO+∠OCA=90°,∵OB=OC,∴∠BCO=∠B,∵∠ACD=∠B,∴∠ACD+∠OCA=90°,∵OC是⊙O的半徑,∴EF是⊙O的切線;(2)解:在Rt△ABC和Rt△ACD中,∵∠ACD=∠B,∠ACB=∠ADC,∴Rt△ABC∽Rt△ACD,∴,∴AC2=AD?AB=1×4=4,∴AC=2,∴;(3)解:∵在Rt△ABC中,AC=2,AB=4,∴∠B=30°,∴∠AOC=60°,在Rt△ADC中,∠ACD=∠B=30°,AD=1,∴CD===,∴S陰影=S梯形ADCO﹣S扇形OAC=.【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理,相似三角形的判定與性質(zhì),勾股定理以及扇形面積的計算,熟練掌握圓的基本性質(zhì)是解本題的關(guān)鍵.24、(1);(2)或【分析】(1)過點作,垂足為,連接,根據(jù)垂直平分線的性質(zhì)可得在上,根據(jù)垂徑定理即可求出BD,再根據(jù)勾股定理即可求出AD,設(shè),根據(jù)勾股定理列出方程即可求出半徑;(2)根據(jù)垂直平分線的判定可得點P在BC的中垂線上,即點P在直線AD上,然后根據(jù)點A和點P的相對位置分類討論,然后根據(jù)勾股定理分別求出半徑即可.【詳解】(1)過點作,垂足為,連接∵,∴垂直平分∵∴點在的垂直平分線上,即在上.∵∴∵在中,,∴設(shè),則∵在中,,∴,即解得,即圓的半徑為.(2)∵圓也經(jīng)過、兩點,∴PA=PB∴點P在BC的中垂線上,即點P在直線AD上①當點P在A下方時,此時AP=2,如下圖所示,連接PB∴PD=AD-AP=4根據(jù)勾股定理PB=;②當點P在A上方時,此時AP=2,如下圖所示,連接PB∴PD=AD+AP=8根據(jù)勾股定理PB=.綜上所述:圓的半徑的長為或.【點睛】此題考查的是垂直平分線的判定及性質(zhì)、勾股定理和垂徑定理,掌握垂直平分線的判定及性質(zhì)、勾股定理和垂徑定理的結(jié)合、數(shù)形結(jié)合的數(shù)學思想和分類討論的數(shù)學思想是解決此題的關(guān)鍵.25、(1)△AMP∽△BPQ∽△CQD;(2)AB=6.【解析】根據(jù)題意得出三對相似三角形;設(shè)AP=x,有折疊關(guān)系可得:BP=AP=EP=x,AB=DC=2x,AM=1,根據(jù)△AMP∽△BPQ得:即,根據(jù)由△AMP∽△CQD得:即CQ=2,從而得出AD=BC=BQ+CQ=+2,MD=AD-AM=+2-1=+1,根據(jù)Rt△FDM中∠DMF的正弦值得出x的值,從而求出AB的值.【詳解】(1)有三對相似三角形,即△AMP∽△BPQ∽△CQD(2)設(shè)AP=x,有折疊關(guān)系可得:BP=AP=EP=xAB=DC=2xAM=1由△AMP∽△BPQ得:即由△AMP∽△CQD得:即CQ=2AD=BC=BQ+CQ=+2MD=AD-AM=+2-1=+1又∵在Rt△FDM中,sin∠DMF=DF=DC=2x∴解得:x=3或x=(不合題意,舍去)∴AB=2x=6.考點:相似三角形的應(yīng)用、三角函數(shù)、折疊圖形的性質(zhì).26、拋物線的解析式為:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相離或相切或相交;(3)相應(yīng)S的取值范圍為S>c2.【分析】將頂點(0,5)及點(﹣3,)代入拋物線的頂點式即可求出其解析式;(2)由拋物線的解析式先求出點M的坐標,由二次函數(shù)的圖象及性質(zhì)即可判斷d的值,可由d的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒科醫(yī)生簡短述職報告
- 中秋節(jié)的演講稿(范文15篇)
- 口才班課件教學課件
- 高等數(shù)學教程 上冊 第4版 習題及答案 P225 第9章 微分方程
- 文書模板-天然氣公司股東協(xié)議書
- 政策濫用及其對商家的影響 -2023年全球參考基準
- 高校課程課件教學課件
- 綦江區(qū)七年級上學期語文期末考試試卷
- 第二中學九年級上學期語文開學考試試卷
- 部編版小學語文三年級上冊第20課《美麗小興安嶺》讀寫練習題
- 美容院顧客管理檔案表
- 錦鯉的繁殖與選優(yōu)技術(shù)
- 四年級數(shù)學家長會課件
- 華北理工《社會醫(yī)學》講義11健康危險因素評價
- 透析飲食課件
- 妊娠期高血壓護理查房醫(yī)學課件
- 新部編人教版四年級上冊語文課件(第16課 風箏)
- 臨床診斷與思維步驟課件
- 放射科危急值制度考試試題與答案
- 通信發(fā)展的前世今生兒童科普(課堂PPT)課件(PPT 38頁)
- 老年人口腔保健知識PPT課件
評論
0/150
提交評論