版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈爾濱南崗區(qū)2025屆九上數(shù)學期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列說法正確的是()A.垂直于半徑的直線是圓的切線 B.經(jīng)過三點一定可以作圓C.平分弦的直徑垂直于弦 D.每個三角形都有一個外接圓2.已知正多邊形的邊心距與邊長的比為,則此正多邊形為()A.正三角形 B.正方形 C.正六邊形 D.正十二邊形3.拋物線經(jīng)過平移得到拋物線,平移過程正確的是()A.先向下平移個單位,再向左平移個單位B.先向上平移個單位,再向右平移個單位C.先向下平移個單位,再向右平移個單位D.先向上平移個單位,再向左平移個單位.4.對于二次函數(shù)的圖象,下列說法正確的是()A.開口向下 B.頂點坐標是C.對稱軸是直線 D.與軸有兩個交點5.二次函數(shù)經(jīng)過平移后得到二次函數(shù),則平移方法可為()A.向左平移1個單位,向上平移1個單位B.向左平移1個單位,向下平移1個單位C.向右平移1個單位,向下平移1個單位D.向右平移1個單位,向上平移1個單位6.一元二次方程x2-4x-1=0配方可化為()A.(x+2)2=3 B.(x+2)2=5 C.(x-2)2=3 D.(x-2)2=57.某藥品原價為100元,連續(xù)兩次降價后,售價為64元,則的值為()A.10 B.20 C.23 D.368.一元二次方程的解是()A. B. C. D.9.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.210.如圖,將矩形沿對角線折疊,使落在處,交于,則下列結(jié)論不一定成立的是()A. B.C. D.二、填空題(每小題3分,共24分)11.圓內(nèi)接正六邊形的邊長為6,則該正六邊形的邊心距為_____.12.如圖,量角器外沿上有A、B兩點,它們的讀數(shù)分別是70°、40°,則∠1的度數(shù)為___度.13.如圖,在半徑為的圓形鐵片上切下一塊高為的弓形鐵片,則弓形弦的長為__________.14.如圖,半徑為3的圓經(jīng)過原點和點,點是軸左側(cè)圓優(yōu)弧上一點,則_____.15..如圖,圓錐側(cè)面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.16.從長度分別是,,,的四根木條中,抽出其中三根能組成三角形的概率是______.17.如圖,點,,都在上,連接,,,,,,則的大小是______.18.是關(guān)于的一元二次方程的一個根,則___________三、解答題(共66分)19.(10分)為早日實現(xiàn)脫貧奔小康的宏偉目標,我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當?shù)卣闹С窒?,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:(1)求y與x之間的函數(shù)關(guān)系式;(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?20.(6分)如圖,在直角三角形△ABC中,∠BAC=90°,點E是斜邊BC的中點,圓O經(jīng)過A、C、E三點,F(xiàn)是弧EC上的一個點,且∠AFC=36°,則∠B=______.21.(6分)如圖,用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園(矩形ABCD),墻長為22m,這個矩形的長AB=xm,菜園的面積為Sm2,且AB>AD.(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(2)若要圍建的菜園為100m2時,求該萊園的長.(3)當該菜園的長為多少m時,菜園的面積最大?最大面積是多少m2?22.(8分)如圖,BD為⊙O的直徑,點A是劣弧BC的中點,AD交BC于點E,連結(jié)AB.(1)求證:AB2=AE·AD;(2)若AE=2,ED=4,求圖中陰影的面積.23.(8分)如圖,點都在上,請僅用無刻度的直尺分別按下列要求畫圖.(不寫作法,保留作圖痕跡)(1)在圖1中,若,畫一個的內(nèi)接等腰直角三角形.(2)在圖2中,若點在弦上,且,畫一個的內(nèi)接等腰直角三角形.24.(8分)解方程:4x2﹣8x+3=1.25.(10分)已知:在中,.(1)求作:的外接圓.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若的外接圓的圓心到邊的距離為4,,則.26.(10分)如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.(1)求證:∠CDE=∠ABC;(2)求證:AD?CD=AB?CE.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)圓的切線的定義、圓的定義、垂徑定理、三角形外接圓的定義逐項判斷即可.【詳解】A、垂直于半徑且與圓只有一個交點的直線是圓的切線,此項說法錯誤B、不在同一直線上的三點一定可以作圓,此項說法錯誤C、平分弦(非直徑)的直徑垂直于弦,此項說法錯誤D、每個三角形都有一個外接圓,此項說法正確故選:D.【點睛】本題考查了圓的切線的定義、圓的定義、垂徑定理、三角形外接圓的定義,熟記圓的相關(guān)概念和定理是解題關(guān)鍵.2、B【分析】邊心距與邊長的比為,即邊心距等于邊長的一半,進而可知半徑與邊心距的夾角是15度.可求出中心角的度數(shù),從而得到正多邊形的邊數(shù).【詳解】如圖,圓A是正多邊形的內(nèi)切圓;∠ACD=∠ABD=90°,AC=AB,CD=BD是邊長的一半,當正多邊形的邊心距與邊長的比為,即如圖有AB=BD,則△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多邊形的中心角是90度,所以它的邊數(shù)=360÷90=1.故選:B.【點睛】本題利用了正多邊形與它的內(nèi)切圓的關(guān)系求解,轉(zhuǎn)化為解直角三角形的計算.3、D【分析】先利用頂點式得到拋物線的頂點坐標為,拋物線的頂點坐標為,然后利用點平移的規(guī)律確定拋物線的平移情況.【詳解】解:拋物線的頂點坐標為,拋物線的頂點坐標為,而點先向上平移2個單位,再向左平移3個單位后可得點,拋物線先向上平移2個單位,再向左平移3個單位后可得拋物線.故選:.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.4、B【分析】根據(jù)二次函數(shù)基本性質(zhì)逐個分析即可.【詳解】A.a=3,開口向上,選項A錯誤B.頂點坐標是,B是正確的C.對稱軸是直線,選項C錯誤D.與軸有沒有交點,選項D錯誤故選:B【點睛】本題考核知識點:二次函數(shù)基本性質(zhì):頂點、對稱軸、交點.解題關(guān)鍵點:熟記二次函數(shù)基本性質(zhì).5、D【分析】解答本題可根據(jù)二次函數(shù)平移的特征,左右平移自變量x加減(左加右減),上下平移y加減(下加上減),據(jù)此便能得出答案.【詳解】由得平移方法可為向右平移1個單位,向上平移1個單位故答案為:D.【點睛】本題考查了二次函數(shù)的平移問題,掌握次函數(shù)的平移特征是解題的關(guān)鍵.6、D【分析】移項,配方,即可得出選項.【詳解】x2?4x?1=0,x2?4x=1,x2?4x+4=1+4,(x?2)2=5,故選:D.【點睛】本題考查了解一元二次方程的應用,能正確配方是解此題的關(guān)鍵.7、B【解析】根據(jù)題意可列出一元二次方程100(1-)2=64,即可解出此題.【詳解】依題意列出方程100(1-)2=64,解得a=20,(a=180,舍去)故選B.【點睛】此題主要考察一元二次方程的應用,依題意列出方程是解題的關(guān)鍵.8、D【分析】這個式子先移項,變成x2=4,從而把問題轉(zhuǎn)化為求4的平方根.【詳解】移項得,x2=4開方得,x=±2,故選D.【點睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.9、B【解析】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以O(shè)C垂直EF故∠OEF=30°所以EF=OE=2.10、C【解析】分析:主要根據(jù)折疊前后角和邊相等對各選項進行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故選C.點睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數(shù)學中一種常用的解題方法.二、填空題(每小題3分,共24分)11、3【分析】根據(jù)題意畫出圖形,利用等邊三角形的性質(zhì)及銳角三角函數(shù)的定義直接計算即可.【詳解】如圖所示,連接OB、OC,過O作OG⊥BC于G.∵此多邊形是正六邊形,∴△OBC是等邊三角形,∴∠OBG=60°,∴邊心距OG=OB?sin∠OBG=6(cm).故答案為:.【點睛】本題考查了正多邊形與圓、銳角三角函數(shù)的定義及特殊角的三角函數(shù)值,熟知正六邊形的性質(zhì)是解答本題的關(guān)鍵.12、15【分析】圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.【詳解】解:∵∠AOB=70°-40°=30°∴∠1=∠AOB=15°故答案為:15°.【點睛】本題考查圓周角定理.13、【分析】首先構(gòu)造直角三角形,再利用勾股定理得出BC的長,進而根據(jù)垂徑定理得出答案.【詳解】解:如圖,過O作OD⊥AB于C,交⊙O于D,
∵CD=4,OD=10,
∴OC=6,
又∵OB=10,
∴Rt△BCO中,BC=∴AB=2BC=1.
故答案是:1.【點睛】此題主要考查了垂徑定理以及勾股定理,得出BC的長是解題關(guān)鍵.14、【分析】由題意運用圓周角定理以及銳角三角函數(shù)的定義進行分析即可得解.【詳解】解:假設(shè)圓與下軸的另一交點為D,連接BD,∵,∴BD為直徑,,∵點,∴OB=2,∴,∵OB為和公共邊,∴,∴.故答案為:.【點睛】本題考查的是圓周角定理、銳角三角函數(shù)的定義,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等以及熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.15、4【解析】先根據(jù)圓錐的側(cè)面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結(jié)論.【詳解】設(shè)圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側(cè)面展開圖,勾股定理,求出OA的長是解本題的關(guān)鍵.16、【分析】四根木條中,抽出其中三根的組合有4種,計算出能組成三角形的組合,利用概率公式進行求解即可.【詳解】解:能組成三角形的組合有:4,8,10;4,10,12;8,10,12三種情況,故抽出其中三根能組成三角形的概率是.【點睛】本題考查了列舉法求概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,構(gòu)成三角形的基本要求為兩小邊之和大于最大邊.17、【分析】根據(jù)題意可知△ABC是等腰三角形,∠BAO=20°,可得出∠AOB的度數(shù),根據(jù)同弧所對的圓周角是圓心角的一半即可得出答案.【詳解】解:∵AO=OB∴△AOB是等腰三角形∵∠BAO=20°∴∠OBA=20°,∠AOB=140°∵∠AOB=2∠ACB∴∠ACB=70°故答案為:70°【點睛】本題主要考查的是同弧所對的圓周角是圓心角的一半以及圓的基本性質(zhì),掌握這兩個知識點是解題的關(guān)鍵.18、-1【分析】將x=-1代入一元二次方程,即可求得c的值.【詳解】解:∵x=-1是關(guān)于x的一元二次方程的一個根,
∴,∴c=-1,
故答案:-1.【點睛】本題考查了一元二次方程的解的定義,是基礎(chǔ)知識比較簡單.三、解答題(共66分)19、(1)y=﹣0.5x+110;(2)房價定為120元時,合作社每天獲利最大,最大利潤是5000元.【解析】(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得相應的函數(shù)解析式;(2)根據(jù)題意可以得到利潤與x之間的函數(shù)解析式,從而可以求得最大利潤.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,,解得:,即y與x之間的函數(shù)關(guān)系式是y=﹣0.5x+110;(2)設(shè)合作社每天獲得的利潤為w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴當x=120時,w取得最大值,此時w=5000,答:房價定為120元時,合作社每天獲利最大,最大利潤是5000元.【點睛】本題考查了一次函數(shù)的應用、二次函數(shù)的應用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.20、18°【分析】連接,根據(jù)圓周角定理可得出的度數(shù),再由直角三角形的性質(zhì)得,根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】解:連接,點是斜邊的中點是的外角故答案為:.【點睛】本題考查的是圓周角定理,根據(jù)題意作輔助線,構(gòu)造出圓周角是解答此題的關(guān)鍵.21、(1)S=﹣x1+13x,10<x≤11;(1)菜園的長為10m;(3)該菜園的長為13m時,菜園的面積最大,最大面積是111.3m1.【分析】(1)根據(jù)矩形的面積公式即可得結(jié)論;(1)根據(jù)題意列一元二次方程即可求解;(3)根據(jù)二次函數(shù)的頂點式即可求解.【詳解】解:(1)由題意可知:AD=(30﹣x)∴S=AB?AD=x×(30﹣x)=﹣x1+13x自變量x的取值范圍是10<x≤11.(1)當S=100時,﹣x1+13x=100解得x1=10,x1=10,又10<x≤11.∴x=10,答:該菜園的長為10m.(3)∵S=﹣x1+13x=﹣(x﹣13)1+又10<x≤11.∴當x=13時,S取得最大值,最大值為111.3.答:該菜園的長為13m時,菜園的面積最大,最大面積是111.3m1.【點睛】本題考查了二次函數(shù)的應用、一元二次方程的應用,解決本題的關(guān)鍵是理解題意列出二次函數(shù)解析式和方程.22、(1)見解析;(2)2π-3.【解析】(1)點A是劣弧BC的中點,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可證得△ABE∽△ADB,根據(jù)相似三角形的對應邊成比例,即可證得AB2=AE?AD.(2)連結(jié)OA,由S陰影=S扇形AOB-S△AOB求出即可.【詳解】(1)證明:∵點A是劣弧BC的中點,∴=∴∠ABC=∠ADB.又∵∠BAD=∠EAB,∴△ABE∽△ADB.∴.∴AB2=AE?AD.(2)解:連結(jié)OA∵AE=2,ED=4,由(1)可知∴AB2=AE?AD,∴AB2=AE?AD=AE(AE+ED)=2×6=1.∴AB=(舍負).∵BD為⊙O的直徑,∴∠BAD=90°.在Rt△ABD中,BD=∴OB=.∴OA=OB=AB=∴△AOB為等邊三角形∴∠AOB=60°.S陰影=S扇形AOB-S△AOB=【點睛】本題考查的知識點是相似三角形的判定與性質(zhì),圓周角定理,切線的性質(zhì),解直角三角形,解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì),圓周角定理,切線的性質(zhì),解直角三角形.23、(1)見解析;(2)見解析【分析】根據(jù)內(nèi)接三角形和等腰直角三角形的性質(zhì),結(jié)合題意即可得出答案.【詳解】解:(1)如圖1,即為所求(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國大數(shù)據(jù)行業(yè)應用趨勢調(diào)查及投資規(guī)劃分析報告
- 2024-2030年中國固廢處理行業(yè)發(fā)展趨勢規(guī)劃研究報告
- 2024-2030年中國嘟米融資商業(yè)計劃書
- 2024年度環(huán)保產(chǎn)業(yè)融資合同書a正規(guī)范文本2篇
- 眉山藥科職業(yè)學院《蒙臺梭利教育與實踐》2023-2024學年第一學期期末試卷
- 2024年度乒乓球國家隊教練團隊聘請合同3篇
- 2024年新編小額短期借款協(xié)議電子版一
- 2024年版樁基工程承包標準協(xié)議模板版B版
- 2024年度家政服務(wù)標準協(xié)議版A版
- 2024年小學三年級數(shù)學(北京版)-連乘問題第二課時-3學習任務(wù)單
- 人教新課標四年級上冊數(shù)學《2.1認識公頃》說課稿
- 專升本英語智慧樹知到答案2024年江蘇財會職業(yè)學院
- 2024年河南省中考語文試卷試題答案詳解及備考指導(精校打印版)
- NB-T32041-2018光伏發(fā)電站設(shè)備后評價規(guī)程
- 分子生物學技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年江蘇大學
- 眼耳鼻咽喉口腔科護理學復習試題
- 專題08 探索與表達規(guī)律(解析版)
- 中華人民共和國突發(fā)事件應對法課件
- 人教版英語七年級上冊句型轉(zhuǎn)換方法
- 腋窩入路腔鏡甲狀腺手術(shù)
- 中職高二數(shù)學下學期期末考試試題卷(含答題卷、參考答案)
評論
0/150
提交評論