版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}2.已知函數(shù),則下列結(jié)論錯(cuò)誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到3.在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.4.()A. B. C.1 D.5.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.6.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.157.已知函數(shù),則在上不單調(diào)的一個(gè)充分不必要條件可以是()A. B. C.或 D.8.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.89.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于10.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-11.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級(jí)每周星期一至星期五的每天閱讀半個(gè)小時(shí)中國(guó)四大名著:《紅樓夢(mèng)》、《三國(guó)演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種12.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團(tuán)活動(dòng)),排課要求為:語(yǔ)文、數(shù)學(xué)、外語(yǔ)、物理、化學(xué)各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學(xué)必須安排在上午且與外語(yǔ)不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.14.已知F為拋物線C:x2=8y的焦點(diǎn),P為C上一點(diǎn),M(﹣4,3),則△PMF周長(zhǎng)的最小值是_____.15.若,則______.16.已知單位向量的夾角為,則=_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長(zhǎng).(2)若為線段上一點(diǎn),且,求二面角的余弦值.18.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為求a,b的值;證明:.19.(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對(duì)于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.20.(12分)在直角坐標(biāo)系中,長(zhǎng)為3的線段的兩端點(diǎn)分別在軸、軸上滑動(dòng),點(diǎn)為線段上的點(diǎn),且滿足.記點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)若點(diǎn)為曲線上的兩個(gè)動(dòng)點(diǎn),記,判斷是否存在常數(shù)使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)的值和這個(gè)定值;若不存在,請(qǐng)說明理由.21.(12分)在平面直角坐標(biāo)系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設(shè)直線(為參數(shù))與曲線相交于不同兩點(diǎn),.(1)若,求線段的中點(diǎn)的坐標(biāo);(2)設(shè)點(diǎn),若,求直線的斜率.22.(10分)設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.(1)求橢圓的方程;(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.2、D【解析】
由可判斷選項(xiàng)A;當(dāng)時(shí),可判斷選項(xiàng)B;利用整體換元法可判斷選項(xiàng)C;可判斷選項(xiàng)D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時(shí),,所以B正確;當(dāng)時(shí),,所以C正確;由的圖象向左平移個(gè)單位,得,所以D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對(duì)稱性、單調(diào)性以及圖象變換后的解析式等知識(shí),是一道中檔題.3、D【解析】
取AC中點(diǎn)N,由題意得即為二面角的平面角,過點(diǎn)B作于O,易得點(diǎn)O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點(diǎn)N,連接BN,DN,則,,即為二面角的平面角,過點(diǎn)B作于O,則平面ACD,由,可得,,,即點(diǎn)O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點(diǎn)睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.4、A【解析】
利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長(zhǎng)公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模長(zhǎng)的計(jì)算,同時(shí)也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.5、A【解析】
根據(jù)題意得到,化簡(jiǎn)得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6、B【解析】,∴,選B.7、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對(duì)稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時(shí),顯然不成立;當(dāng)時(shí),只需或,解得或.故選:D.【點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.8、C【解析】
先確定集合中元素,可得非空子集個(gè)數(shù).【詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.【點(diǎn)睛】本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).9、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.10、C【解析】
直線過定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.【點(diǎn)睛】本題考查過定點(diǎn)的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.11、B【解析】
首先將五天進(jìn)行分組,再對(duì)名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問題.12、B【解析】
求出復(fù)數(shù),得出其對(duì)應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對(duì)應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1344【解析】
分四種情況討論即可【詳解】解:數(shù)學(xué)排在第一節(jié)時(shí)有:數(shù)學(xué)排在第二節(jié)時(shí)有:數(shù)學(xué)排在第三節(jié)時(shí)有:數(shù)學(xué)排在第四節(jié)時(shí)有:所以共有1344種故答案為:1344【點(diǎn)睛】考查排列、組合的應(yīng)用,注意分類討論,做到不重不漏;基礎(chǔ)題.14、5【解析】
△PMF的周長(zhǎng)最小,即求最小,過做拋物線準(zhǔn)線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點(diǎn),P為C上一點(diǎn),M(﹣4,3),拋物線C:x2=8y的焦點(diǎn)為F(0,2),準(zhǔn)線方程為y=﹣2.過作準(zhǔn)線的垂線,垂足為,則有,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立,所以△PMF的周長(zhǎng)最小值為55.故答案為:5.【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.15、【解析】
直接利用關(guān)系式求出函數(shù)的被積函數(shù)的原函數(shù),進(jìn)一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):定積分的應(yīng)用,被積函數(shù)的原函數(shù)的求法,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.16、【解析】
因?yàn)閱挝幌蛄康膴A角為,所以,所以==.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的長(zhǎng)為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)?,所以,即,解得,所以的長(zhǎng)為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線段長(zhǎng)度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.18、(1);(2)見解析【解析】分析:第一問結(jié)合導(dǎo)數(shù)的幾何意義以及切點(diǎn)在切線上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來(lái)完成,這樣利用不等式的傳遞性來(lái)完成,再者這種方法可以簡(jiǎn)化運(yùn)算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設(shè)則只需證明,設(shè)則,在上單調(diào)遞增,,使得且當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞減當(dāng)時(shí),,單調(diào)遞增,由,得,,設(shè),,當(dāng)時(shí),,在單調(diào)遞減,,因此(方法二)先證當(dāng)時(shí),,即證設(shè),則,且,在單調(diào)遞增,在單調(diào)遞增,則當(dāng)時(shí),(也可直接分析顯然成立)再證設(shè),則,令,得且當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,即又,點(diǎn)睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的綜合問題,在求解的過程中,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,有關(guān)切線的問題,還有就是應(yīng)用導(dǎo)數(shù)證明不等式,可以構(gòu)造新函數(shù),轉(zhuǎn)化為最值問題來(lái)解決,也可以借用不等式的傳遞性,借助中間量來(lái)完成.19、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對(duì)函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對(duì)目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域?yàn)?,,,,可知,,解得,,可知在,時(shí),,函數(shù)單調(diào)遞增,在時(shí),,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點(diǎn)睛】本題考查由切線的斜率求參數(shù)的值,以及對(duì)具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點(diǎn)在于對(duì)目標(biāo)式的變形,屬綜合性中檔題.20、(1)(2)存在;常數(shù),定值【解析】
(1)設(shè)出的坐標(biāo),利用以及,求得曲線的方程.(2)當(dāng)直線的斜率存在時(shí),設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當(dāng)直線的斜率不存在時(shí),驗(yàn)證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為設(shè),由可得:由點(diǎn)到的距離為定值可得(為常數(shù))即得:即,又為定值時(shí),,此時(shí),且符合當(dāng)直線的斜率不存在時(shí),設(shè)直線方程為由題可得,時(shí),,經(jīng)檢驗(yàn),符合條件綜上可知,存在常數(shù),且定值【點(diǎn)睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,考查橢圓中的定值問題,屬于難題.21、(1);(2).【解析】
(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點(diǎn)參數(shù)和,再利用M點(diǎn)的參數(shù)為A、B兩點(diǎn)參數(shù)和的一半即可求M的坐標(biāo);(2)利用直線參數(shù)方程的幾何意義得到,再利用計(jì)算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當(dāng)時(shí),將(為參數(shù))代入得,設(shè)直線l上A、B兩點(diǎn)所對(duì)應(yīng)的參數(shù)為,中點(diǎn)M所對(duì)應(yīng)的參數(shù)為,則,所以的坐標(biāo)為;(2)將代入得,則,因?yàn)榧?,所以,故,由得,所?【點(diǎn)睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識(shí),考查學(xué)生的計(jì)算能力,是一道中檔題.22、(1);(2)見解析.【解析】
(I)結(jié)合離心率,得到a,b,c的關(guān)系,計(jì)算A的坐標(biāo),計(jì)算切線與橢圓交點(diǎn)坐標(biāo),代入橢圓方程,計(jì)算參數(shù),即可.(II)分切線斜率存在與不存在討論,設(shè)出M,N的坐標(biāo),設(shè)出切線方程,結(jié)合圓心到
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版國(guó)際貿(mào)易合同履行中的知識(shí)產(chǎn)權(quán)保護(hù)協(xié)議2篇
- 中醫(yī)學(xué)徒師承合同模板(2024年版)版B版
- 二零二五年生物制藥技術(shù)合同認(rèn)定與登記服務(wù)協(xié)議3篇
- 2025年度二零二五年度商業(yè)綜合體攤位租賃服務(wù)協(xié)議3篇
- 二零二五版信息技術(shù)企業(yè)股權(quán)托管與產(chǎn)業(yè)協(xié)同協(xié)議3篇
- 2025年度城市排水系統(tǒng)改造與安裝服務(wù)合同3篇
- 2025年度智能停車設(shè)施運(yùn)營(yíng)管理合同范本2篇
- 二零二五版出租汽車行業(yè)駕駛員勞動(dòng)合同標(biāo)準(zhǔn)文本3篇
- 2024手繪墻繪藝術(shù)作品展覽與推廣合同3篇
- 2024離婚彩禮退還與財(cái)產(chǎn)分割爭(zhēng)議解決執(zhí)行服務(wù)協(xié)議3篇
- EPC項(xiàng)目機(jī)電安裝專業(yè)工程重難點(diǎn)分析及經(jīng)驗(yàn)交流
- 大型活動(dòng)聯(lián)合承辦協(xié)議
- 工程項(xiàng)目采購(gòu)與供應(yīng)鏈管理研究
- 2024年吉林高考語(yǔ)文試題及答案 (2) - 副本
- 拆除電纜線施工方案
- 搭竹架合同范本
- Neo4j介紹及實(shí)現(xiàn)原理
- 焊接材料-DIN-8555-標(biāo)準(zhǔn)
- 工程索賠真實(shí)案例范本
- 重癥醫(yī)學(xué)科運(yùn)用PDCA循環(huán)降低ICU失禁性皮炎發(fā)生率品管圈QCC持續(xù)質(zhì)量改進(jìn)成果匯報(bào)
- 個(gè)人股權(quán)證明書
評(píng)論
0/150
提交評(píng)論